Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Baktash Babadi is active.

Publication


Featured researches published by Baktash Babadi.


Journal of Neurophysiology | 2010

Fast Nonnegative Deconvolution for Spike Train Inference From Population Calcium Imaging

Joshua T. Vogelstein; Adam M. Packer; Timothy A. Machado; Tanya Sippy; Baktash Babadi; Rafael Yuste; Liam Paninski

Fluorescent calcium indicators are becoming increasingly popular as a means for observing the spiking activity of large neuronal populations. Unfortunately, extracting the spike train of each neuron from a raw fluorescence movie is a nontrivial problem. This work presents a fast nonnegative deconvolution filter to infer the approximately most likely spike train of each neuron, given the fluorescence observations. This algorithm outperforms optimal linear deconvolution (Wiener filtering) on both simulated and biological data. The performance gains come from restricting the inferred spike trains to be positive (using an interior-point method), unlike the Wiener filter. The algorithm runs in linear time, and is fast enough that even when simultaneously imaging >100 neurons, inference can be performed on the set of all observed traces faster than real time. Performing optimal spatial filtering on the images further refines the inferred spike train estimates. Importantly, all the parameters required to perform the inference can be estimated using only the fluorescence data, obviating the need to perform joint electrophysiological and imaging calibration experiments.


PLOS Computational Biology | 2010

Intrinsic Stability of Temporally Shifted Spike-Timing Dependent Plasticity

Baktash Babadi; L. F. Abbott

Spike-timing dependent plasticity (STDP), a widespread synaptic modification mechanism, is sensitive to correlations between presynaptic spike trains and it generates competition among synapses. However, STDP has an inherent instability because strong synapses are more likely to be strengthened than weak ones, causing them to grow in strength until some biophysical limit is reached. Through simulations and analytic calculations, we show that a small temporal shift in the STDP window that causes synchronous, or nearly synchronous, pre- and postsynaptic action potentials to induce long-term depression can stabilize synaptic strengths. Shifted STDP also stabilizes the postsynaptic firing rate and can implement both Hebbian and anti-Hebbian forms of competitive synaptic plasticity. Interestingly, the overall level of inhibition determines whether plasticity is Hebbian or anti-Hebbian. Even a random symmetric jitter of a few milliseconds in the STDP window can stabilize synaptic strengths while retaining these features. The same results hold for a shifted version of the more recent “triplet” model of STDP. Our results indicate that the detailed shape of the STDP window function near the transition from depression to potentiation is of the utmost importance in determining the consequences of STDP, suggesting that this region warrants further experimental study.


Neuroreport | 2005

Brain complexity increases in mania.

Bahador Bahrami; Reza Seyedsadjadi; Baktash Babadi; Maryam Noroozian

An important challenge in measuring whole brain activation is to develop a measure that could distinguish between normal and abnormal mood states. The application of chaos theory and non-linear dynamics to problems in biological sciences has resulted in a growing body of advancements and the notion of brain as a complex, non-linear system has attracted physicists, mathematicians, biologists and psychologists alike. To search for a correlation between alterations in chaotic brain states and mood disorders, we compared the fractal dimension of the electroencephalographic (EEG) signal in patients going through a manic episode of bipolar mood disorder (BMD) type I to a control group of healthy adults and showed that the EEG fractal dimension is significantly augmented in our patients. Thus, for the first time, we draw a clear objective distinction between normal and abnormal mood and associated brain states.


Neuron | 2014

Sparseness and Expansion in Sensory Representations

Baktash Babadi; Haim Sompolinsky

In several sensory pathways, input stimuli project to sparsely active downstream populations that have more neurons than incoming axons. Here, we address the computational benefits of expansion and sparseness for clustered inputs, where different clusters represent behaviorally distinct stimuli and intracluster variability represents sensory or neuronal noise. Through analytical calculations and numerical simulations, we show that expansion implemented by feed-forward random synaptic weights amplifies variability in the incoming stimuli, and this noise enhancement increases with sparseness of the expanded representation. In addition, the low dimensionality of the input layer generates overlaps between the induced representations of different stimuli, limiting the benefit of expansion. Highly sparse expansive representations obtained through synapses that encode the clustered structure of the input reduce both intrastimulus variability and the excess overlaps between stimuli, enhancing the ability of downstream neurons to perform classification and recognition tasks. Implications for olfactory, cerebellar, and visual processing are discussed.


Journal of Vision | 2010

A generalized linear model of the impact of direct and indirect inputs to the lateral geniculate nucleus.

Baktash Babadi; Alexander R. R. Casti; Youping Xiao; Ehud Kaplan; Liam Paninski

Relay neurons in the lateral geniculate nucleus (LGN) receive direct visual input predominantly from a single retinal ganglion cell (RGC), in addition to indirect input from other sources including interneurons, thalamic reticular nucleus (TRN), and the visual cortex. To address the extent of influence of these indirect sources on the response properties of the LGN neurons, we fit a Generalized Linear Model (GLM) to the spike responses of cat LGN neurons driven by spatially homogeneous spots that were rapidly modulated by a pseudorandom luminance sequence. Several spot sizes were used to probe the spatial extent of the indirect visual effects. Our extracellular recordings captured both the LGN spikes and the incoming RGC input (S potentials), allowing us to divide the inputs to the GLM into two categories: the direct RGC input and the indirect input to which we have access through the luminance of the visual stimulus. For spots no larger than the receptive field center, the effect of the indirect input is negligible, while for larger spots its effect can, on average, account for 5% of the variance of the data and for as much as 25% in some cells. The polarity of the indirect visual influence is opposite to that of the linear receptive field of the neurons. We conclude that the indirect source of response modulation of the LGN relay neurons arises from inhibitory sources, compatible with thalamic interneurons or TRN.


PLOS Computational Biology | 2013

Pairwise Analysis Can Account for Network Structures Arising from Spike-Timing Dependent Plasticity

Baktash Babadi; L. F. Abbott

Spike timing-dependent plasticity (STDP) modifies synaptic strengths based on timing information available locally at each synapse. Despite this, it induces global structures within a recurrently connected network. We study such structures both through simulations and by analyzing the effects of STDP on pair-wise interactions of neurons. We show how conventional STDP acts as a loop-eliminating mechanism and organizes neurons into in- and out-hubs. Loop-elimination increases when depression dominates and turns into loop-generation when potentiation dominates. STDP with a shifted temporal window such that coincident spikes cause depression enhances recurrent connections and functions as a strict buffering mechanism that maintains a roughly constant average firing rate. STDP with the opposite temporal shift functions as a loop eliminator at low rates and as a potent loop generator at higher rates. In general, studying pairwise interactions of neurons provides important insights about the structures that STDP can produce in large networks.


Biological Cybernetics | 2002

New attractor states for synchronous activity in synfire chains with excitatory and inhibitory coupling

Arash Yazdanbakhsh; Baktash Babadi; Shahin Rouhani; Ehsan Arabzadeh; Abdolhosein Abbassian

Abstract. In a feedforward network of integrate-and-fire neurons, where the firing of each layer is synchronous (synfire chain), the final firing state of the network converges to two attractor states: either a full activation or complete fading of the tailing layers. In this article, we analyze various modes of pattern propagation in a synfire chain with random connection weights and delta-type postsynaptic currents. We predict analytically that when the input is fully synchronized and the network is noise free, varying the characteristics of the weights distribution would result in modes of behavior that are different from those described in the literature. These are convergence to fixed points, limit cycles, multiple periodic, and possibly chaotic dynamics. We checked our analytic results by computer simulation of the network, and showed that the above results can be generalized when the input is asynchronous and neurons are spontaneously active at low rates.


Journal of Computational Neuroscience | 2005

Bursting as an Effective Relay Mode in a Minimal Thalamic Model

Baktash Babadi

In recent years, accumulating evidence indicates that thalamic bursts are present during wakefulness and participate in information transmission as an effective relay mode with distinctive properties from the tonic activity. Thalamic bursts originate from activation of the low threshold calcium cannels via a local feedback inhibition, exerted by the thalamic reticular neurons upon the relay neurons. This article, examines if this simple mechanism is sufficient to explain the distinctive properties of thalamic bursting as an effective relay mode. A minimal model of thalamic circuit composed of a retinal spike train, a relay neuron and a reticular neuron is simulated to generate the tonic and burst firing modes. The integrate-and-fire-or-burst model is used to simulate the neurons. After discriminating the burst events with criteria based on inter-spike-intervals, statistical indices show that the bursts of the minimal model are stereotypic events. The relation between the rate of bursts and the parameters of the input spike train demonstrates marked nonlinearities. Burst response is shown to be selective to spike-silence-spike sequences in the input spike train. Moreover, burst events represent the input more reliably than the tonic spike in a considerable range of the parameters of the model. In conclusion, many of the distinctive properties of thalamic bursts such as stereotypy, nonlinear dependence on the sensory stimulus, feature selectivity and reliability are reproducible in the minimal model. Furthermore, the minimal model predicts that while the bursts are more frequent in the spike train of the off-center X relay neurons (corresponding to off-center X retinal ganglion cells), they are more reliable when generated by the on-center ones (corresponding to on-center X ganglion cells).


eLife | 2014

A neural circuit mechanism for regulating vocal variability during song learning in zebra finches

Jonathan Garst-Orozco; Baktash Babadi; Bence P. Ölveczky

Motor skill learning is characterized by improved performance and reduced motor variability. The neural mechanisms that couple skill level and variability, however, are not known. The zebra finch, a songbird, presents a unique opportunity to address this question because production of learned song and induction of vocal variability are instantiated in distinct circuits that converge on a motor cortex analogue controlling vocal output. To probe the interplay between learning and variability, we made intracellular recordings from neurons in this area, characterizing how their inputs from the functionally distinct pathways change throughout song development. We found that inputs that drive stereotyped song-patterns are strengthened and pruned, while inputs that induce variability remain unchanged. A simple network model showed that strengthening and pruning of action-specific connections reduces the sensitivity of motor control circuits to variable input and neural ‘noise’. This identifies a simple and general mechanism for learning-related regulation of motor variability. DOI: http://dx.doi.org/10.7554/eLife.03697.001


Perception | 2002

Munker-White-like illusions without T-junctions.

Arash Yazdanbakhsh; Ehsan Arabzadeh; Baktash Babadi; Arash Fazl

Some interpretations of the Munker–White illusion were evaluated by designing new versions of this illusion devoid of T-junctions (Munker–White-like images). The magnitudes of both Munker–White and Munker–White-like illusions were then quantified by using a brightness-matching technique. The results showed the effect to persist in all proposed versions. Since the illusion still remains despite the absence of explicit T-junctions and any explanation considering transparency, mechanisms other than those proposed by these interpretations must be responsible.

Collaboration


Dive into the Baktash Babadi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bahador Bahrami

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander R. R. Casti

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Alexay A. Kozhevnikov

McGovern Institute for Brain Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge