Bala R. Iyer
Raman Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bala R. Iyer.
Physical Review Letters | 1995
Luc Blanchet; Thibault Damour; Bala R. Iyer; Clifford M. Will; Alan G. Wiseman
The rate of gravitational-wave energy loss from inspiralling binary systems of compact objects of arbitrary mass is derived through second post-Newtonian (2PN) order O[(Gm/rc 2 ) 2 ] beyond the quadrupole approximation. The result has been derived by two independent calculations of the (source) multipole moments. The 2PN terms, and in particular the finite mass contribution therein (which cannot be obtained in perturbation calculations of black hole spacetimes), are shown to make a significant contribution to the accumulated phase of theoretical templates to be used in matched filtering of the data from future gravitational-wave detectors.
Physical Review Letters | 2004
Luc Blanchet; Thibault Damour; Gilles Esposito-Farese; Bala R. Iyer
The gravitational radiation from point particle binaries is computed at the third post-Newtonian (3PN) approximation of general relativity. Three previously introduced ambiguity parameters, coming from the Hadamard self-field regularization of the 3PN source-type mass quadrupole moment, are consistently determined by means of dimensional regularization, and proved to have the values xi=-9871/9240, kappa=0, and zeta=-7/33. These results complete the derivation of the general relativistic prediction for compact binary inspiral up to 3.5PN order, and should be of use for searching and deciphering the signals in the current network of gravitational wave detectors.
Classical and Quantum Gravity | 2009
K. G. Arun; S. Babak; Emanuele Berti; Neil J. Cornish; Curt Cutler; Jonathan R. Gair; Scott A. Hughes; Bala R. Iyer; Ryan N. Lang; Ilya Mandel; Edward K. Porter; B. S. Sathyaprakash; Siddhartha Sinha; A. M. Sintes; M. Trias; Chris Van Den Broeck; Marta Volonteri
The LISA Parameter Estimation Taskforce was formed in September 2007 to provide the LISA Project with vetted codes, source distribution models and results related to parameter estimation. The Taskforces goal is to be able to quickly calculate the impact of any mission design changes on LISAs science capabilities, based on reasonable estimates of the distribution of astrophysical sources in the universe. This paper describes our Taskforces work on massive black-hole binaries (MBHBs). Given present uncertainties in the formation history of MBHBs, we adopt four different population models, based on (i) whether the initial black-hole seeds are small or large and (ii) whether accretion is efficient or inefficient at spinning up the holes. We compare four largely independent codes for calculating LISAs parameter-estimation capabilities. All codes are based on the Fisher-matrix approximation, but in the past they used somewhat different signal models, source parametrizations and noise curves. We show that once these differences are removed, the four codes give results in extremely close agreement with each other. Using a code that includes both spin precession and higher harmonics in the gravitational-wave signal, we carry out Monte Carlo simulations and determine the number of events that can be detected and accurately localized in our four population models.
Classical and Quantum Gravity | 2008
Luc Blanchet; Guillaume Faye; Bala R. Iyer; Siddhartha Sinha
The gravitational waveform (GWF) generated by inspiralling compact binaries moving in quasi-circular orbits is computed at the third post-Newtonian (3PN) approximation to general relativity. Our motivation is two-fold: (i) to provide accurate templates for the data analysis of gravitational wave inspiral signals in laser interferometric detectors; (ii) to provide the associated spin-weighted spherical harmonic decomposition to facilitate comparison and match of the high post-Newtonian prediction for the inspiral waveform to the numerically-generated waveforms for the merger and ringdown. This extension of the GWF by half a PN order (with respect to previous work at 2.5PN order) is based on the algorithm of the multipolar post-Minkowskian formalism, and mandates the computation of the relations between the radiative, canonical and source multipole moments for general sources at 3PN order. We also obtain the 3PN extension of the source multipole moments in the case of compact binaries, and compute the contributions of hereditary terms (tails, tails-of-tails and memory integrals) up to 3PN order. The end results are given for both the complete plus and cross polarizations and the separate spin-weighted spherical harmonic modes.
Physical Review D | 1998
Thibault Damour; Bala R. Iyer; Bangalore Suryanarayana Sathyaprakash
The order of the post-Newtonian expansion needed to extract in a reliable and accurate manner the fully general relativistic gravitational wave signal from inspiraling compact binaries is explored. A class of approximate wave forms, called P-approximants, is constructed based on the following two inputs: (a) the introduction of two new energy-type and flux-type functions e(v) and f(v), respectively, (b) the systematic use of the Pade approximation for constructing successive approximants of e(v) and f(v). The new P-approximants are not only more effectual (larger overlaps) and more faithful (smaller biases) than the standard Taylor approximants, but also converge faster and monotonically. The presently available (v/c)^5-accurate post-Newtonian results can be used to construct P-approximate wave forms that provide overlaps with the exact wave form larger than 96.5%, implying that more than 90% of potential events can be detected with the aid of P-approximants as opposed to a mere 10–15 % that would be detectable using standard post-Newtonian approximants.
Physical Review D | 2010
C. Mishra; K. G. Arun; Bala R. Iyer; Bangalore Suryanarayana Sathyaprakash
General relativity has very specific predictions for the gravitational waveforms from inspiralling compact binaries obtained using the post-Newtonian (PN) approximation. We investigate the extent to which the measurement of the PN coefficients, possible with the second generation gravitational-wave detectors such as the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) and the third generation gravitational-wave detectors such as the Einstein Telescope (ET), could be used to test post-Newtonian theory and to put bounds on a subclass of parametrized-post-Einstein theories which differ from general relativity in a parametrized sense. We demonstrate this possibility by employing the best inspiralling waveform model for nonspinning compact binaries which is 3.5PN accurate in phase and 3PN in amplitude. Within the class of theories considered, Advanced LIGO can test the theory at 1.5PN and thus the leading tail term. Future observations of stellar mass black hole binaries by ET can test the consistency between the various PN coefficients in the gravitational-wave phasing over the mass range of 11-44M(circle dot). The choice of the lower frequency cutoff is important for testing post-Newtonian theory using the ET. The bias in the test arising from the assumption of nonspinning binaries is indicated.
Physical Review D | 2000
Thibault Damour; Bala R. Iyer; Bangalore Suryanarayana Sathyaprakash
Frequency-domain filters for time-windowed gravitational waves from inspiraling compact binaries are constructed which combine the excellent performance of our previously developed time-domain P approximants with the analytic convenience of the stationary phase approximation without a serious loss in event rate. These Fourier-domain representations incorporate the “edge oscillations” due to the (assumed) abrupt shutoff of the time-domain signal caused by the relativistic plunge at the last stable orbit. These new analytic approximations, the SPP approximants, are not only effectual for detection and faithful for parameter estimation, but are also computationally inexpensive to generate (and are faster by factors up to 10, as compared to the corresponding time-domain templates). The SPP approximants should provide data analysts the Fourier-domain templates for massive black hole binaries of total mass m≲40M⊙, the most likely sources for LIGO and VIRGO.
Physical Review D | 2005
Luc Blanchet; Thibault Damour; Gilles Esposito-Farese; Bala R. Iyer
Dimensional regularization is applied to the computation of the gravitational wave field generated by compact binaries at the third post-Newtonian (3PN) approximation. We generalize the wave generation formalism from isolated post-Newtonian matter systems to d spatial dimensions, and apply it to point masses (without spins), modeled by delta-function singularities. We find that the quadrupole moment of point-particle binaries in harmonic coordinates contains a pole when {epsilon}{identical_to}d-3{yields}0 at the 3PN order. It is proved that the pole can be renormalized away by means of the same shifts of the particle world lines as in our recent derivation of the 3PN equations of motion. The resulting renormalized (finite when {epsilon}{yields}0) quadrupole moment leads to unique values for the ambiguity parameters {xi}, {kappa}, and {zeta}, which were introduced in previous computations using Hadamards regularization. Several checks of these values are presented. These results complete the derivation of the gravitational waves emitted by inspiralling compact binaries up to the 3.5PN level of accuracy which is needed for detection and analysis of the signals in the gravitational wave antennas LIGO/VIRGO and LISA.
Physical Review D | 2002
Thibault Damour; Bala R. Iyer; B. S. Sathyaprakash
Phasing formulas in a recent paper of ours’ [Phys. Rev. D 63, 044023 (2001)] are updated taking into account the recent 3.5PN results. Some misprints in our recent paper are also corrected.
Physical Review D | 2006
K G Arun; Bala R. Iyer; Moh'd S.S. Qusailah; Bangalore Suryanarayana Sathyaprakash
Observations of the inspiral of massive binary black holes (BBH) in the Laser Interferometer Space Antenna (LISA) and stellar mass binary black holes in the European Gravitational Wave Observatory (EGO) offer an unique opportunity to test the nonlinear structure of general relativity. For a binary composed of two nonspinning black holes, the nonlinear general relativistic effects depend only on the masses of the constituents. In a recent paper, we explored the possibility of a test to determine all the post-Newtonian coefficients in the gravitational wave phasing. However, mutual covariances dilute the effectiveness of such a test. In this paper, we propose a more powerful test in which the various post-Newtonian coefficients in the gravitational wave phasing are systematically measured by treating three of them as independent parameters and demanding their mutual consistency. LISA (EGO) will observe BBH inspirals with a signal-to-noise ratio of more than 1000 (100) and thereby test the self-consistency of each of the nine post-Newtonian coefficients that have so-far been computed, by measuring the lower order coefficients to a relative accuracy of ∼10-5 (respectively, ∼10-4) and the higher order coefficients to a relative accuracy in the range 10-4-0.1 (respectively, 10-3-1).