Balaiya Velmurugan
University of Colorado Denver
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Balaiya Velmurugan.
Pharmaceutical Research | 2009
Manjinder Kaur; Balaiya Velmurugan; Subapriya Rajamanickam; Rajesh Agarwal; Chapla Agarwal
PurposeGallic acid, a natural agent present in a wide-range of fruits and vegetables, has been of potential interest as an anti-cancer agent; herein, we evaluated its efficacy in androgen-independent DU145 and androgen-dependent-22Rv1 human prostate cancer (PCa) cells.Materials and MethodsCell viability was determined by MTT and apoptosis by Annexin V-PI assays. In vivo anti-cancer efficacy was assessed by DU145 and 22Rv1 xenograft growth in nude mice given normal drinking water or one supplemented with 0.3% or 1% (w/v) gallic acid. PCNA, TUNEL and CD31 immunostaining was performed in tumor tissues for in vivo anti-proliferative, apoptotic and anti-angiogenic effects of gallic acid.ResultsGallic acid decreased cell viability in a dose-dependent manner in both DU145 and 22Rv1 cells largely via apoptosis induction. In tumor studies, gallic acid feeding inhibited the growth of DU145 and 22Rv1 PCa xenografts in nude mice. Immunohistochemical analysis revealed significant inhibition of tumor cell proliferation, induction of apoptosis, and reduction of microvessel density in tumor xenografts from gallic acid-fed mice as compared to controls in both DU145 and 22Rv1 models.ConclusionTaken together, our findings show the anti-PCa efficacy of gallic acid and provide a rationale for additional studies with this naturally-occurring agent for its efficacy against PCa.
Cancer Research | 2010
Subapriya Rajamanickam; Balaiya Velmurugan; Manjinder Kaur; Rana P. Singh; Rajesh Agarwal
Chemoprevention is a practical and translational approach to reduce the risk of various cancers including colorectal cancer (CRC), which is a major cause of cancer-related deaths in the United States. Accordingly, here we assessed chemopreventive efficacy and associated mechanisms of long-term silibinin feeding on spontaneous intestinal tumorigenesis in the APC(min/+) mice model. Six-week-old APC(min/+) mice were p.o. fed with vehicle control (0.5% carboxymethyl cellulose and 0.025% Tween 20 in distilled water) or 750 mg silibinin/kg body weight in vehicle for 5 d/wk for 13 weeks and then sacrificed. Silibinin feeding strongly prevented intestinal tumorigenesis in terms of polyp formation in proximal, middle, and distal portions of small intestine by 27% (P < 0.001), 34% (P < 0.001), and 49% (P < 0.001), respectively. In colon, we observed 55% (P < 0.01) reduction in number of polyps by silibinin treatment. In size distribution analysis, silibinin showed significant decrease in large-size polyps (>3 mm) by 66% (P < 0.01) and 88% (P < 0.001) in middle and distal portions of small intestine, respectively. More importantly, silibinin caused a complete suppression in >3 mm sized polyps and 92% reduction in >2 to 3 mm sized polyps in colon. Molecular analyses of polyps suggested that silibinin exerts its chemopreventive efficacy by inhibiting cell proliferation, inflammation, and angiogenesis; inducing apoptosis; decreasing beta-catenin levels and transcriptional activity; and modulating the expression profile of cytokines. These results show for the first time the efficacy and associated mechanisms of long-term p.o. silibinin feeding against spontaneous intestinal tumorigenesis in the APC(min/+) mice model, suggesting its chemopreventive potential against intestinal cancers including CRC.
Molecular Cancer Therapeutics | 2009
Manjinder Kaur; Balaiya Velmurugan; Alpna Tyagi; Gagan Deep; Suchitra Katiyar; Chapla Agarwal; Rajesh Agarwal
Colorectal cancer is one of the leading causes of cancer-related morbidity and mortality. The use of nontoxic phytochemicals in the prevention and intervention of colorectal cancer has been suggested as an alternative to chemotherapy. Here we assessed the anticancer efficacy of silibinin against advanced colorectal cancer LoVo cells both in vitro and in vivo. Our results showed that silibinin treatment strongly inhibits the growth of LoVo cells (P < 0.05-0.001) and induces apoptotic death (P < 0.01-0.001), which was associated with increased levels of cleaved caspases (3 and 9) and cleaved poly(ADP-ribose) polymerase. Additionally, silibinin caused a strong cell cycle arrest at G1 phase and a slight but significant G2-M-phase arrest at highest concentration (P < 0.01-0.001). Molecular analyses for cell cycle regulators showed that silibinin decreases the level of cyclins (D1, D3, A and B1) and cyclin-dependent kinases (1, 2, 4, and 6) and increases the level of cyclin-dependent kinase inhibitors (p21 and p27). Consistent with these results, silibinin treatment also decreased the phosphorylation of retinoblastoma protein at Ser780, Ser795, and Ser807/Ser811 sites without significantly affecting its total level. In animal studies, oral administration of silibinin for 6 weeks (at 100 and 200 mg/kg/d for 5 days/wk) significantly inhibited the growth of LoVo xenograft (P < 0.001) in athymic nude mice without any apparent toxicity. Analyses of xenograft tissue showed that silibinin treatment inhibits proliferation and increases apoptosis along with a strong increase in p27 levels but a decrease in retinoblastoma phosphorylation. Together, these results suggest the potential use of silibinin against advanced human colorectal cancer. [Mol Cancer Ther 2009;8(8):2366–74]
Molecular Carcinogenesis | 2010
Balaiya Velmurugan; Rana P. Singh; Rajesh Agarwal; Chapla Agarwal
Chemoprevention by dietary agents/supplements has emerged as a novel approach to control various malignancies, including colorectal cancer (CRC). This study assessed dietary grape seed extract (GSE) effectiveness in preventing azoxymethane (AOM)‐induced aberrant crypt foci (ACF) formation and associated mechanisms in Fischer 344 rats. Six‐week‐old rats were injected with AOM, and fed control diet or the one supplemented with 0.25% or 0.5% (w/w) GSE in pre‐ and post‐AOM or only post‐AOM experimental protocols. At 16 wk of age, rats were sacrificed and colons were evaluated for ACF formation followed by cell proliferation, apoptosis, and molecular analyses by immunohistochemistry. GSE‐feeding caused strong chemopreventive efficacy against AOM‐induced ACF formation in terms of up to 60% (P < 0.001) reduction in number of ACF and 66% (P < 0.001) reduction in crypt multiplicity. Mechanistic studies showed that GSE‐feeding inhibited AOM‐induced cell proliferation but enhanced apoptosis in colon including ACF, together with a strong decrease in cyclin D1, COX‐2, iNOS, and survivin levels. Additional studies showed that GSE‐feeding also decreased AOM‐caused increase in β‐catenin and NF‐κB levels in colon tissues. Compared to control animals, GSE alone treatment did not show any considerable change in these biological and molecular events in colon, and was nontoxic. Together, these findings show the chemopreventive efficacy of GSE against the early steps of colon carcinogenesis in rats via likely targeting of β‐catenin and NF‐κB signaling, and suggest its potential usefulness for the prevention of human CRC.
Cancer Prevention Research | 2008
Balaiya Velmurugan; Rana P. Singh; Alpna Tyagi; Rajesh Agarwal
Chemoprevention is a practical approach to control colorectal cancer, which is one of the major causes of cancer mortality in the United States. Based on our recent silibinin efficacy studies in human colorectal cancer cells, we investigated the effects of its dietary feeding on azoxymethane (AOM)-induced aberrant crypt foci (ACF) formation and associated biomarkers in male Fisher 344 rats. Five-week-old male Fisher 344 rats were fed control or silibinin-supplemented (0.033%, 0.1%, 0.33%, or 1%, w/w) diet. After 2 weeks, AOM was injected once a week for 2 weeks while silibinin treatments were continued. In another protocol, identical silibinin treatments were done but started 2 weeks post-AOM initiation. All rats were sacrificed at 16 weeks of age, and colon samples were evaluated for ACF, followed by proliferation, apoptosis, and inducible nitric oxide synthase and cyclooxygenase-2, by immunohistochemistry and/or immunoblotting. Silibinin significantly (P < 0.001) reduced dose-dependently the number and multiplicity of AOM-induced ACF formation. Silibinin feeding in pre- and post-AOM initiation decreased mean number of ACF by 39% to 65% and in post-AOM initiation by 29% to 55%. Silibinin dose-dependently decreased AOM-induced colonic cell proliferation, evidenced by proliferative cell nuclear antigen and cyclin D1 immunohistochemical staining, and induced apoptosis in these colon tissues, evidenced by terminal deoxyribonucleotidyl transferase–mediated dUTP nick end labeling staining and cleaved poly(ADP-ribose) polymerase. Furthermore, silibinin significantly decreased AOM-induced inducible nitric oxide synthase– and cyclooxygenase-2–positive cells in colon tissues. The present findings show possible beneficial activity of silibinin at least in early stage of colon tumorigenesis, suggesting that silibinin might be an effective natural agent for colorectal cancer chemoprevention.
Clinical Cancer Research | 2010
Kameswaran Ravichandran; Balaiya Velmurugan; Mallikarjuna Gu; Rana P. Singh; Rajesh Agarwal
Purpose: Colorectal cancer is the second leading cause of cancer-associated deaths, which suggests that more effort is needed to prevent/control this disease. Herein, for the first time, we investigate in vivo the efficacy of silibinin against azoxymethane-induced colon tumorigenesis in A/J mice. Experimental Design: Five-week-old male mice were gavaged with vehicle or silibinin (250 and 750 mg/kg) for 25 weeks starting 2 weeks before initiation with azoxymethane (pretreatment regime) or for 16 weeks starting 2 weeks after the last azoxymethane injection (posttreatment regime). The mice were then sacrificed, and colon tissues were examined for tumor multiplicity and size, and molecular markers for proliferation, apoptosis, inflammation, and angiogenesis. Results: Silibinin feeding showed a dose-dependent decrease in azoxymethane-induced colon tumorigenesis with stronger efficacy in pretreatment versus posttreatment regimen. Mechanistic studies in tissue samples showed that silibinin inhibits cell proliferation as evident by a decrease (P < 0.001) in proliferating cell nuclear antigen and cyclin D1, and increased Cip1/p21 levels. Silibinin also decreased (P < 0.001) the levels of inducible nitric oxide synthase, cyclooxygenase-2, and vascular endothelial growth factor, suggesting its anti-inflammatory and antiangiogenic potential in this model. Further, silibinin increased cleaved caspase-3 and poly(ADP-ribose) polymerase levels, indicating its apoptotic effect. In other studies, colonic mucosa and tumors expressed high levels of β-catenin, insulin-like growth factor-1 receptorβ, phospho Glycogen synthase kinase-3β, and phospho protein kinase B/pAkt proteins in azoxymethane-treated mice, which were strongly lowered (P < 0.001) by silibinin treatment. Moreover, azoxymethane reduced insulin-like growth factor binding protein-3 protein level, which was enhanced by silibinin. Conclusions: Silibinin targets β-catenin and IGF-1Rβ pathways for its chemopreventive efficacy against azoxymethane-induced colon carcinogenesis in A/J mice. Overall, these results support the translational potential of silibinin in colorectal cancer chemoprevention. Clin Cancer Res; 16(18); 4595–606. ©2010 AACR.
Neoplasia | 2010
Balaiya Velmurugan; Rana P. Singh; Nidhi Kaul; Rajesh Agarwal; Chapla Agarwal
Pharmaceutical Research | 2009
Subapriya Rajamanickam; Manjinder Kaur; Balaiya Velmurugan; Rana P. Singh; Rajesh Agarwal
Pharmaceutical Research | 2010
Balaiya Velmurugan; Subhash Chander Gangar; Manjinder Kaur; Alpna Tyagi; Gagan Deep; Rajesh Agarwal
Archive | 2008
Balaiya Velmurugan; Rajesh Agarwal; Rana P. Singh; V. K. Singh; J. N. Govil