Balaji M. Rao
North Carolina State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Balaji M. Rao.
Nature Cell Biology | 2008
Xaralabos Varelas; Rui Sakuma; Payman Samavarchi-Tehrani; Raheem Peerani; Balaji M. Rao; Joanna Dembowy; Michael B. Yaffe; Peter W. Zandstra; Jeffrey L. Wrana
Transforming growth fazctor-β (TGFβ) family members regulate many developmental and pathological events through Smad transcriptional modulators. How nuclear accumulation of Smad is coupled to the transcriptional machinery is poorly understood. Here we demonstrate that in response to TGFβ stimulation the transcriptional regulator TAZ binds heteromeric Smad2/3–4 complexes and is recruited to TGFβ response elements. In human embryonic stem cells TAZ is required to maintain self-renewal markers and loss of TAZ leads to inhibition of TGFβ signalling and differentiation into a neuroectoderm lineage. In the absence of TAZ, Smad2/3–4 complexes fail to accumulate in the nucleus and activate transcription. Furthermore, TAZ, which itself engages in shuttling, dominantly controls Smad nucleocytoplasmic localization and can be retained in the nucleus by transcriptional co-factors such as ARC105, a component of the Mediator complex. TAZ thus defines a hierarchical system regulating Smad nuclear accumulation and coupling to the transcriptional machinery.
The EMBO Journal | 2007
Raheem Peerani; Balaji M. Rao; Céline Bauwens; Ting Yin; Geoffrey A. Wood; Andras Nagy; Eugenia Kumacheva; Peter W. Zandstra
Complexity in the spatial organization of human embryonic stem cell (hESC) cultures creates heterogeneous microenvironments (niches) that influence hESC fate. This study demonstrates that the rate and trajectory of hESC differentiation can be controlled by engineering hESC niche properties. Niche size and composition regulate the balance between differentiation‐inducing and ‐inhibiting factors. Mechanistically, a niche size‐dependent spatial gradient of Smad1 signaling is generated as a result of antagonistic interactions between hESCs and hESC‐derived extra‐embryonic endoderm (ExE). These interactions are mediated by the localized secretion of bone morphogenetic protein‐2 (BMP2) by ExE and its antagonist, growth differentiation factor‐3 (GDF3) by hESCs. Micropatterning of hESCs treated with small interfering (si) RNA against GDF3, BMP2 and Smad1, as well treatments with a Rho‐associated kinase (ROCK) inhibitor demonstrate that independent control of Smad1 activation can rescue the colony size‐dependent differentiation of hESCs. Our results illustrate, for the first time, a role for Smad1 in the integration of spatial information and in the niche‐size‐dependent control of hESC self‐renewal and differentiation.
Analytical Chemistry | 2010
Timothy S. Collier; Prasenjit Sarkar; William L. Franck; Balaji M. Rao; Ralph A. Dean; David C. Muddiman
Numerous experimental strategies exist for relative protein quantification, one of the primary objectives of mass spectrometry based proteomics analysis. These strategies mostly involve the incorporation of a stable isotope label via either metabolic incorporation in cell or tissue culture (¹⁵N/¹⁴N metabolic labeling, stable isotope labeling by amino acids in cell culture (SILAC)), chemical derivatization (ICAT, iTRAQ, TMT), or enzymatically catalyzed incorporation (¹⁸O labeling). Also, these techniques can be cost or time prohibitive or not amenable to the biological system of interest (i.e., metabolic labeling of clinical samples, most animals, or fungi). This is the case with the quantification of fungal proteomes, which often require auxotroph mutants to fully metabolically label. Alternatively, label-free strategies for protein quantification such as using integrated ion abundance and spectral counting have been demonstrated for quantification affording over 2 orders of magnitude of dynamic range which is comparable to metabolic labeling strategies. Direct comparisons of these quantitative techniques are largely lacking in the literature but are highly warranted in order to evaluate the capabilities, limitations, and analytical variability of available quantitative strategies. Here, we present the direct comparison of SILAC to label-free quantification by spectral counting of an identical set of data from the bottom-up proteomic analysis of human embryonic stem cells, which are readily able to be quantified using both strategies, finding that both strategies result in a similar number of protein identifications. We also discuss necessary constraints for accurate quantification using spectral counting and assess the potential of this label-free strategy as a viable alternative for quantitative proteomics.
Methods | 2013
Nimish Gera; Mahmud Hussain; Balaji M. Rao
Binding proteins are typically isolated from combinatorial libraries of scaffold proteins using one of the many library screening tools available, such as phage display, yeast surface display or mRNA display. A key principle underlying these screening technologies is the establishment of a link between each unique mutant protein and its corresponding genetic code. The mutant proteins binding a desired target species are separated and subsequently identified using the genetic code. In this review, we largely focus on the use of yeast surface display for the isolation of binding proteins from combinatorial libraries. In yeast surface display, the yeast cell links the mutant protein to its coding DNA. Each yeast cell expresses the mutant proteins as fusions to a yeast cell wall protein; the yeast cell also carries plasmid DNA that codes for the mutant protein. Over the years, the yeast surface display platform has emerged as a powerful tool for protein engineering, and has been used in a variety of applications including affinity maturation, epitope mapping and biophysical characterization of proteins. Here we present a broad overview of the yeast surface display system and its applications, and compare it with other contemporary screening platforms. Further, we present detailed protocols for the use of yeast surface display to isolate de novo binding proteins from combinatorial libraries, and subsequent biophysical characterization of binders. These protocols can also be easily modified for affinity maturation of the isolated de novo binders.
Journal of the American Society for Mass Spectrometry | 2010
Timothy S. Collier; Prasenjit Sarkar; Balaji M. Rao; David C. Muddiman
Human embryonic stem cells (hESCs) are self-renewing pluripotent cells with relevance to treatment of numerous medical conditions. However, a global understanding of the role of the hESC proteome in maintaining pluripotency or triggering differentiation is still largely lacking. The emergence of top-down proteomics has facilitated the identification and characterization of intact protein forms that are not readily apparent in bottom-up studies. Combined with metabolic labeling techniques such as stable isotope labeling by amino acids in cell culture (SILAC), quantitative comparison of intact protein expression under differing experimental conditions is possible. Herein, quantitative top-down proteomics of hESCs is demonstrated using the SILAC method and nano-flow reverse phase chromatography directly coupled to a linear-ion-trap Fourier transform ion cyclotron resonance mass spectrometer (nLC-LTQ-FT-ICR-MS). In this study, which to the best of our knowledge represents the first top-down analysis of hESCs, we have confidently identified 11 proteins by accurate intact mass, MS/MS, and amino acid counting facilitated by SILAC labeling. Although quantification is challenging due to the incorporation of multiple labeled amino acids (i.e., lysine and arginine) and arginine to proline conversion, we are able to quantitatively account for these phenomena using a mathematical model.
Journal of Molecular Biology | 2011
Nimish Gera; Mahmud Hussain; Robert C. Wright; Balaji M. Rao
We have shown that highly stable binding proteins for a wide spectrum of targets can be generated through mutagenesis of the Sso7d protein from the hyperthermophilic archaeon Sulfolobus solfataricus. Sso7d is a small (~7 kDa, 63 amino acids) DNA-binding protein that lacks cysteine residues and has a melting temperature of nearly 100 °C. We generated a library of 10(8) Sso7d mutants by randomizing 10 amino acid residues on the DNA-binding surface of Sso7d, using yeast surface display. Binding proteins for a diverse set of model targets could be isolated from this library; our chosen targets included a small organic molecule (fluorescein), a 12 amino acid peptide fragment from the C-terminus of β-catenin, the model proteins hen egg lysozyme and streptavidin, and immunoglobulins from chicken and mouse. Without the application of any affinity maturation strategy, the binding proteins isolated had equilibrium dissociation constants in the nanomolar to micromolar range. Further, Sso7d-derived binding proteins could discriminate between closely related immunoglobulins. Mutant proteins based on Sso7d were expressed at high yields in the Escherichia coli cytoplasm. Despite extensive mutagenesis, Sso7d mutants have high thermal stability; five of six mutants analyzed have melting temperatures >89 °C. They are also resistant to chemical denaturation by guanidine hydrochloride and retain their secondary structure after extended incubation at extreme pH values. Because of their favorable properties, such as ease of recombinant expression, and high thermal, chemical and pH stability, Sso7d-derived binding proteins will have wide applicability in several areas of biotechnology and medicine.
ACS Applied Materials & Interfaces | 2013
Kiran K. Goli; Nimish Gera; Xiaomeng Liu; Balaji M. Rao; Orlando J. Rojas; Jan Genzer
We present a simple method for attaching silver nanoparticles to polypropylene (PP) fibers in a two-step process to impart antibacterial properties. Specifically, PP fibers are pretreated by the adsorption from an aqueous solution of heat-denatured lysozyme (LYS) followed by LYS cross-linking using glutaraldehyde and sodium borohydride. At neutral pH, the surface of the adsorbed LYS layer is enriched with numerous positive charges. Silver nanoparticles (AgNPs) capped with trisodium citrate are subsequently deposited onto the protein-coated PP. Nanoparticle binding is mediated by electrostatic interactions between the positively charged LYS layer and the negatively charged AgNPs. The density of AgNPs deposited on PP depends on the amount of protein adsorbed on the surface. UV-vis spectroscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and scanning electron microscopy are employed to follow all preparation steps and to characterize the resulting functional surfaces. The antibacterial activity of the modified surfaces is tested against gram negative bacteria Escherichia coli (E. coli). Overall, our results show that PP surfaces coated with AgNPs exhibit excellent antibacterial activity with 100% removal efficiency.
Molecular Pharmacology | 2004
Balaji M. Rao; Ian Driver; Douglas A. Lauffenburger; K. Dane Wittrup
Proliferation of activated T cells and CD56 bright natural killer (Cytokine Growth Factor Rev 13:169-183, 1995) cells caused by interleukin-2 (IL-2) has been exploited in IL-2-based therapies for the treatment of metastatic renal cell carcinoma and melanoma (J Clin Oncol 13:688-696, 1995; J Clin Oncol 17: 2105-2116, 1999). In this study, we demonstrate the potentially improved therapeutic value of IL-2 variants engineered to gain 15- to 30-fold increased affinity for the IL-2 receptor alpha-subunit (IL-2Ralpha). A novel pulsed bioassay was used to more closely approximate the rapid systemic clearance pharmacokinetics of cytokines such as IL-2, compared with conventional static bioassays. In this assay, mutants with increased affinity for IL-2Ralpha exhibit significantly increased activity for T-cell proliferation, whereas static bioassays not only fail to reveal the increased activity resulting from enhanced IL-2Ralpha affinity (false negatives), but also suggest improved activity for another mutant without enhanced activity in the pulsed assay (false positive). Our studies on the mechanism leading to increased activity of IL-2 mutants with increased IL-2Ralpha affinity suggest that cell-surface IL-2Ralpha acts as a ligand reservoir for the IL-2 mutants. This leads to increased cell-surface persistence of the IL-2 mutants with increased IL-2Ralpha affinity in cell-surface ligand reservoirs and consequently increased integrated growth signal. Furthermore, a mathematical model predicts increased persistence of cell surface-bound IL-2 in vivo for enhanced IL-2Ralpha-binding IL-2 mutants, suggesting potentially improved therapeutic value of allowing cellular capture of ligands in persistent cell-surface reservoirs. Finally, our findings emphasize the critical choice of appropriate bioassays to evaluate engineered proteins and other drugs.
Rapid Communications in Mass Spectrometry | 2011
Timothy S. Collier; Shan M. Randall; Prasenjit Sarkar; Balaji M. Rao; Ralph A. Dean; David C. Muddiman
Protein quantification is one of the principal goals of mass spectrometry (MS)-based proteomics, and many strategies exist to achieve it. Several approaches involve the incorporation of a stable-isotope label using either chemical derivatization, enzymatically catalyzed incorporation of (18)O, or metabolic labeling in a cell or tissue culture. These techniques can be cost or time prohibitive or not amenable to the biological system of interest. Label-free techniques including those utilizing integrated ion abundance and spectral counting offer an alternative to stable-isotope-based methodologies. Herein, we present the comparison of stable-isotope labeling of amino acids in cell culture (SILAC) with spectral counting for the quantification of human embryonic stem cells as they differentiate toward the trophectoderm at three time points. Our spectral counting experimental strategy resulted in the identification of 2641 protein groups across three time points with an average sequence coverage of 30.3%, of which 1837 could be quantified with more than five spectral counts. SILAC quantification was able to identify 1369 protein groups with an average coverage of 24.7%, of which 1027 could be quantified across all time points. Within this context we further explore the capacity of each strategy for proteome coverage, variation in quantification, and the relative sensitivity of each technique to the detection of change in relative protein expression.
Biotechnology and Bioengineering | 2013
Stefano Menegatti; Mahmud Hussain; Amith D. Naik; Ruben G. Carbonell; Balaji M. Rao
Cyclic peptides are attractive candidates for synthetic affinity ligands due to their favorable properties, such as resistance to proteolysis, and higher affinity and specificity relative to linear peptides. Here we describe the discovery, synthesis and characterization of novel cyclic peptide affinity ligands that bind the Fc portion of human Immunoglobulin G (IgG; hFc). We generated an mRNA display library of cyclic pentapeptides wherein peptide cyclization was achieved with high yield and selectivity, using a solid‐phase crosslinking reaction between two primary amine groups, mediated by a homobifunctional linker. Subsequently, a pool of cyclic peptide binders to hFc was isolated from this library and chromatographic resins incorporating the selected cyclic peptides were prepared by on‐resin solid‐phase peptide synthesis and cyclization. Significantly, this approach results in resins that are resistant to harsh basic conditions of column cleaning and regeneration. Further studies identified a specific cyclic peptide—cyclo[Link‐M‐WFRHY‐K]—as a robust affinity ligand for purification of IgG from complex mixtures. The cyclo[Link‐M‐WFRHY‐K] resin bound selectively to the Fc fragment of IgG, with no binding to the Fab fragment, and also bound immunoglobulins from a variety of mammalian species. Notably, while the recovery of IgG using the cyclo[Link‐M‐WFRHY‐K] resin was comparable to a Protein A resin, elution of IgG could be achieved under milder conditions (pH 4 vs. pH 2.5). Thus, cyclo[Link‐M‐WFRHY‐K] is an attractive candidate for developing a cost‐effective and robust chromatographic resin to purify monoclonal antibodies (mAbs). Finally, our approach can be extended to efficiently generate and evaluate cyclic peptide affinity ligands for other targets of interest. Biotechnol. Bioeng. 2013; 110: 857–870.