Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Balakumaran Chandrasekar is active.

Publication


Featured researches published by Balakumaran Chandrasekar.


Molecular & Cellular Proteomics | 2014

Broad-range Glycosidase Activity Profiling

Balakumaran Chandrasekar; Tom Colby; A. E. K. Emon; Jianbing Jiang; N. Tram Hong; Joji Grace Villamor; Anne Harzen; Herman S. Overkleeft; R. A. L. Van der Hoorn

Plants produce hundreds of glycosidases. Despite their importance in cell wall (re)modeling, protein and lipid modification, and metabolite conversion, very little is known of this large class of glycolytic enzymes, partly because of their post-translational regulation and their elusive substrates. Here, we applied activity-based glycosidase profiling using cell-permeable small molecular probes that react covalently with the active site nucleophile of retaining glycosidases in an activity-dependent manner. Using mass spectrometry we detected the active state of dozens of myrosinases, glucosidases, xylosidases, and galactosidases representing seven different retaining glycosidase families. The method is simple and applicable for different organs and different plant species, in living cells and in subproteomes. We display the active state of previously uncharacterized glycosidases, one of which was encoded by a previously declared pseudogene. Interestingly, glycosidase activity profiling also revealed the active state of a diverse range of putative xylosidases, galactosidases, glucanases, and heparanase in the cell wall of Nicotiana benthamiana. Our data illustrate that this powerful approach displays a new and important layer of functional proteomic information on the active state of glycosidases.


Plant Physiology | 2015

Subfamily-Specific Fluorescent Probes for Cysteine Proteases Display Dynamic Protease Activities during Seed Germination

Haibin Lu; Balakumaran Chandrasekar; Julian Oeljeklaus; Johana C. Misas-Villamil; Zheming Wang; Takayuki Shindo; Matthew Bogyo; Markus Kaiser; Renier A. L. van der Hoorn

Probes for aleurains, cathepsins and vacuolar processing enzymes display protease activities that coincide with seed storage protein remobilization. Cysteine proteases are an important class of enzymes implicated in both developmental and defense-related programmed cell death and other biological processes in plants. Because there are dozens of cysteine proteases that are posttranslationally regulated by processing, environmental conditions, and inhibitors, new methodologies are required to study these pivotal enzymes individually. Here, we introduce fluorescence activity-based probes that specifically target three distinct cysteine protease subfamilies: aleurain-like proteases, cathepsin B-like proteases, and vacuolar processing enzymes. We applied protease activity profiling with these new probes on Arabidopsis (Arabidopsis thaliana) protease knockout lines and agroinfiltrated leaves to identify the probe targets and on other plant species to demonstrate their broad applicability. These probes revealed that most commercially available protease inhibitors target unexpected proteases in plants. When applied on germinating seeds, these probes reveal dynamic activities of aleurain-like proteases, cathepsin B-like proteases, and vacuolar processing enzymes, coinciding with the remobilization of seed storage proteins.


Plant Science | 2016

Characterization of senescence-associated protease activities involved in the efficient protein remobilization during leaf senescence of winter oilseed rape

Marine Poret; Balakumaran Chandrasekar; Renier A. L. van der Hoorn; Jean-Christophe Avice

Oilseed rape (Brassica napus L.) is a crop plant characterized by a poor nitrogen (N) use efficiency that is mainly due to low N remobilization efficiency during the sequential leaf senescence of the vegetative stage. As a high leaf N remobilization efficiency was strongly linked to a high remobilization of proteins during leaf senescence of rapeseed, our objective was to identify senescence-associated protease activities implicated in the protein degradation. To reach this goal, leaf senescence processes and protease activities were investigated in a mature leaf becoming senescent in plants subjected to ample or low nitrate supply. The characterization of protease activities was performed by using in vitro analysis of RuBisCO degradation with or without inhibitors of specific protease classes followed by a protease activity profiling using activity-dependent probes. As expected, the mature leaf became senescent regardless of the nitrate treatment, and nitrate limitation enhanced the senescence processes associated with an enhanced degradation of soluble proteins. The characterization of protease activities revealed that: (i) aspartic proteases and the proteasome were active during senescence regardless of nitrate supply, and (ii) the activities of serine proteases and particularly cysteine proteases (Papain-like Cys proteases and vacuolar processing enzymes) increased when protein remobilization associated with senescence was accelerated by nitrate limitation. Short statement: Serine and particularly cysteine proteases (both PLCPs and VPEs) seem to play a crucial role in the efficient protein remobilization when leaf senescence of oilseed rape was accelerated by nitrate limitation.


Biochemical Society Transactions | 2016

Beta galactosidases in Arabidopsis and tomato - a mini review.

Balakumaran Chandrasekar; Renier A. L. van der Hoorn

Beta galactosidases (BGALs) are glycosyl hydrolases that remove terminal β-D-galactosyl residues from β-D-galactosides. There are 17 predicted BGAL genes in the genomes of both Arabidopsis (BGAL1-17) and tomato (TBG1-17). All tested BGALs have BGAL activity but their distinct expression profiles and ancient phylogenetic separation indicates that these enzymes fulfil diverse, non-redundant roles in plant biology. The majority of these BGALs are predicted to have signal peptide and thought to act during cell wall-related biological processes. Interestingly, deletion of BGAL6 and BGAL10 in Arabidopsis causes reduced mucilage release during seed imbibition and shorter siliques respectively, whereas TBG4 depletion by RNAi decreases in fruit softening in tomato. The majority of plant BGALs remain to be characterized.


Frontiers in Plant Science | 2017

Proteasome Activity Profiling Uncovers Alteration of Catalytic β2 and β5 Subunits of the Stress-Induced Proteasome during Salinity Stress in Tomato Roots

Judit Kovács; Péter Poór; Farnusch Kaschani; Balakumaran Chandrasekar; Tram Ngoc Hong; Johana C. Misas-Villamil; Bo T. Xin; Markus Kaiser; Herman S. Overkleeft; Irma Tari; Renier A. L. van der Hoorn

The stress proteasome in the animal kingdom facilitates faster conversion of oxidized proteins during stress conditions by incorporating different catalytic β subunits. Plants deal with similar kind of stresses and also carry multiple paralogous genes encoding for each of the three catalytic β subunits. Here, we investigated the existence of stress proteasomes upon abiotic stress (salt stress) in tomato roots. In contrast to Arabidopsis thaliana, tomato has a simplified proteasome gene set with single genes encoding each β subunit except for two genes encoding β2. Using proteasome activity profiling on tomato roots during salt stress, we discovered a transient modification of the catalytic subunits of the proteasome coinciding with a loss of cell viability. This stress-induced active proteasome disappears at later time points and coincides with the need to degrade oxidized proteins during salt stress. Subunit-selective proteasome probes and MS analysis of fluorescent 2D gels demonstrated that the detected stress-induced proteasome is not caused by an altered composition of subunits in active proteasomes, but involves an increased molecular weight of both labeled β2 and β5 subunits, and an additional acidic pI shift for labeled β5, whilst labeled β1 remains mostly unchanged. Treatment with phosphatase or glycosidases did not affect the migration pattern. This stress-induced proteasome may play an important role in PCD during abiotic stress.


FEBS Letters | 2016

Activity-based protein profiling of hydrolytic enzymes induced by gibberellic acid in isolated aleurone layers of malting barley.

Sergio N. Daneri-Castro; Balakumaran Chandrasekar; Friederike M. Grosse-Holz; Renier A. L. van der Hoorn; Thomas H. Roberts

During barley germination, the aleurone layer secretes most of the enzymes required to degrade the endosperm, many of which are yet to be characterized. We used activity‐based protein profiling (ABPP) to detect a range of active enzymes extracted from aleurone layers isolated from grains of a commercial malting barley variety incubated with or without gibberellic acid (GA). Enzymes found to be induced by GA were putative aleurains, cathepsin‐B‐like proteases and serine hydrolases. By using an inhibitory sugar panel, a specific active retaining β‐glycosidase in the barley aleurone was identified as a putative xylanase. Our results show that ABPP can be used rapidly to identify a variety of active enzyme isoforms in cereal aleurone without the need for enzyme purification.


Plant Physiology | 2018

Multiplex Fluorescent, Activity-Based Protein Profiling Identifies Active α-Glycosidases and Other Hydrolases in Plants

Amjad M. Husaini; Kyoko Morimoto; Balakumaran Chandrasekar; Steven Kelly; Farnusch Kaschani; D. Palmero; Jianbing Jiang; Markus Kaiser; Oussama Ahrazem; Hermen S. Overkleeft; Renier A. L. van der Hoorn

Activity profiling with biotinylated and fluorescent probes targeting α-glycosidases in plants is applied to saffron crocus and combined with other hydrolase probes. With nearly 140 α-glycosidases in 14 different families, plants are well equipped with enzymes that can break the α-glucosidic bonds in a large diversity of molecules. Here, we introduce activity-based protein profiling (ABPP) of α-glycosidases in plants using α-configured cyclophellitol aziridine probes carrying various fluorophores or biotin. In Arabidopsis (Arabidopsis thaliana), these probes label members of the GH31 family of glycosyl hydrolases, including endoplasmic reticulum-resident α-glucosidase-II Radial Swelling3/Priority for Sweet Life5 (RSW3/PSL5) and Golgi-resident α-mannosidase-II Hybrid Glycosylation1 (HGL1), both of which trim N-glycans on glycoproteins. We detected the active state of extracellular α-glycosidases such as α-xylosidase XYL1, which acts on xyloglucans in the cell wall to promote cell expansion, and α-glucosidase AGLU1, which acts in starch hydrolysis and can suppress fungal invasion. Labeling of α-glycosidases generates pH-dependent signals that can be suppressed by α-glycosidase inhibitors in a broad range of plant species. To demonstrate its use on a nonmodel plant species, we applied ABPP on saffron crocus (Crocus sativus), a cash crop for the production of saffron spice. Using a combination of biotinylated glycosidase probes, we identified and quantified 67 active glycosidases in saffron crocus stigma, of which 10 are differentially active. We also uncovered massive changes in hydrolase activities in the corms upon infection with Fusarium oxysporum using multiplex fluorescence labeling in combination with probes for serine hydrolases and cysteine proteases. These experiments demonstrate the ease with which active α-glycosidases and other hydrolases can be analyzed through ABPP in model and nonmodel plants.


Proteome | 2017

Proteomic Investigations of Proteases Involved in Cotyledon Senescence: A Model to Explore the Genotypic Variability of Proteolysis Machinery Associated with Nitrogen Remobilization Efficiency during the Leaf Senescence of Oilseed Rape.

Marine Poret; Balakumaran Chandrasekar; R. A. L. Van der Hoorn; L. Coquet; T. Jouenne; Jean-Christophe Avice

Oilseed rape is characterized by a low nitrogen remobilization efficiency during leaf senescence, mainly due to a lack of proteolysis. Because cotyledons are subjected to senescence, it was hypothesized that contrasting protease activities between genotypes may be distinguishable early in the senescence of cotyledons. To verify this assumption, our goals were to (i) characterize protease activities in cotyledons between two genotypes with contrasting nitrogen remobilization efficiency (Ténor and Samouraï) under limiting or ample nitrate supply; and (ii) test the role of salicylic acid (SA) and abscisic acid (ABA) in proteolysis regulation. Protease activities were measured and identified by a proteomics approach combining activity-based protein profiling with LC-MS/MS. As in senescing leaves, chlorophyll and protein contents decrease in senescing cotyledons and are correlated with an increase in serine and cysteine protease activities. Two RD21-like and SAG-12 proteases previously associated with an efficient proteolysis in senescing leaves of Ténor are also detected in senescing cotyledons. The infiltration of ABA and SA provokes the induction of senescence and several cysteine and serine protease activities. The study of protease activities during the senescence of cotyledons seems to be a promising experimental model to investigate the regulation and genotypic variability of proteolysis associated with efficient N remobilization.


Methods of Molecular Biology | 2017

Inhibitor Discovery by Convolution ABPP

Balakumaran Chandrasekar; Tram Ngoc Hong; Renier A. L. van der Hoorn

Activity-based protein profiling (ABPP) has emerged as a powerful proteomic approach to study the active proteins in their native environment by using chemical probes that label active site residues in proteins. Traditionally, ABPP is classified as either comparative or competitive ABPP. In this protocol, we describe a simple method called convolution ABPP, which takes benefit from both the competitive and comparative ABPP. Convolution ABPP allows one to detect if a reduced signal observed during comparative ABPP could be due to the presence of inhibitors. In convolution ABPP, the proteomes are analyzed by comparing labeling intensities in two mixed proteomes that were labeled either before or after mixing. A reduction of labeling in the mix-and-label sample when compared to the label-and-mix sample indicates the presence of an inhibitor excess in one of the proteomes. This method is broadly applicable to detect inhibitors in proteomes against any proteome containing protein activities of interest. As a proof of concept, we applied convolution ABPP to analyze secreted proteomes from Pseudomonas syringae-infected Nicotiana benthamiana leaves to display the presence of a beta-galactosidase inhibitor.


ACS Chemical Biology | 2016

Nicotinamide Cofactors Suppress Active-Site Labeling of Aldehyde Dehydrogenases.

Naim Stiti; Balakumaran Chandrasekar; Laura Strubl; Shabaz Mohammed; Dorothea Bartels; Renier A. L. van der Hoorn

Active site labeling by (re)activity-based probes is a powerful chemical proteomic tool to globally map active sites in native proteomes without using substrates. Active site labeling is usually taken as a readout for the active state of the enzyme because labeling reflects the availability and reactivity of active sites, which are hallmarks for enzyme activities. Here, we show that this relationship holds tightly, but we also reveal an important exception to this rule. Labeling of Arabidopsis ALDH3H1 with a chloroacetamide probe occurs at the catalytic Cys, and labeling is suppressed upon nitrosylation and oxidation, and upon treatment with other Cys modifiers. These experiments display a consistent and strong correlation between active site labeling and enzymatic activity. Surprisingly, however, labeling is suppressed by the cofactor NAD(+), and this property is shared with other members of the ALDH superfamily and also detected for unrelated GAPDH enzymes with an unrelated hydantoin-based probe in crude extracts of plant cell cultures. Suppression requires cofactor binding to its binding pocket. Labeling is also suppressed by ALDH modulators that bind at the substrate entrance tunnel, confirming that labeling occurs through the substrate-binding cavity. Our data indicate that cofactor binding adjusts the catalytic Cys into a conformation that reduces the reactivity toward chloroacetamide probes.

Collaboration


Dive into the Balakumaran Chandrasekar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Markus Kaiser

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Farnusch Kaschani

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marine Poret

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge