Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Balasundar I. Raju is active.

Publication


Featured researches published by Balasundar I. Raju.


Journal of Biomechanical Engineering-transactions of The Asme | 2003

3-D Finite-Element Models of Human and Monkey Fingertips to Investigate the Mechanics of Tactile Sense

Kiran Dandekar; Balasundar I. Raju; Mandayam A. Srinivasan

The biomechanics of skin and underlying tissues plays a fundamental role in the human sense of touch. It governs the mechanics of contact between the skin and an object, the transmission of the mechanical signals through the skin, and their transduction into neural signals by the mechanoreceptors. To better understand the mechanics of touch, it is necessary to establish quantitative relationships between the loads imposed on the skin by an object, the state of stresses/strains at mechanoreceptor locations, and the resulting neural response. Towards this goal, 3-D finite-element models of human and monkey fingertips with realistic external geometries were developed. By computing fingertip model deformations under line loads, it was shown that a multi-layered model was necessary to match previously obtained in vivo data on skin surface displacements. An optimal ratio of elastic moduli of the layers was determined through numerical experiments whose results were matched with empirical data. Numerical values of the elastic moduli of the skin layers were obtained by matching computed results with empirically determined force-displacement relationships for a variety of indentors. Finally, as an example of the relevance of the model to the study of tactile neural response, the multilayered 3-D finite-element model was shown to be able to predict the responses of the slowly adapting type I (SA-I) mechanoreceptors to indentations by complex object shapes.


Journal of Controlled Release | 2010

Ultrasound-triggered release of materials entrapped in microbubble-liposome constructs: a tool for targeted drug delivery.

Alexander L. Klibanov; Talent I. Shevchenko; Balasundar I. Raju; Ralf Seip; Chien T. Chin

We investigated the preparation of ultrasound-triggered drug delivery system, based on a pendant complex of microbubble coated with liposomes. Biotinylated decafluorobutane microbubbles were coated with biotinylated liposomes via a streptavidin linker. Liposomes were prepared incorporating calcein and thrombin. Based on initial concentration of calcein, over 1 um(3) payload volume per each microbubble-liposome particle was achieved, when 100 nm liposomes were used. Insonation of microbubble-liposome pendants in vitro resulted in the complete destruction of microbubbles and triggered release of a significant fraction of the entrapped material. Treatment with 1MHz ultrasound (5 pulses, 100 ms, 7 MPa peak negative acoustic pressure) resulted in the release of ~30% of entrapped calcein, as estimated by the fluorescence quenching assay. Thrombin release from liposomes complexed with microbubbles (11% of entrapped material) due to ultrasound treatment was estimated by a chromogenic substrate study. Prior to insonation, substrate hydrolysis was at background level. Ultrasound-triggered release of thrombin from the pendant complexes caused an acceleration of blood clotting.


Journal of Ultrasound in Medicine | 2005

Interlaboratory Comparison of Ultrasonic Backscatter Coefficient Measurements From 2 to 9 MHz

Keith A. Wear; Timothy A. Stiles; Gary R. Frank; Ernest L. Madsen; Francis Cheng; Ernest J. Feleppa; Christopher Stephen Hall; Beom Soo Kim; Paul Lee; William D. O'Brien; Michael L. Oelze; Balasundar I. Raju; K. Kirk Shung; Thaddeus Wilson; Jian R. Yuan

As are the attenuation coefficient and sound speed, the backscatter coefficient is a fundamental ultrasonic property that has been used to characterize many tissues. Unfortunately, there is currently far less standardization for the ultrasonic backscatter measurement than for the other two, as evidenced by a previous American Institute of Ultrasound in Medicine (AIUM)–sponsored interlaboratory comparison of ultrasonic backscatter, attenuation, and speed measurements (J Ultrasound Med 1999; 18:615–631). To explore reasons for these disparities, the AIUM Endowment for Education and Research recently supported this second interlaboratory comparison, which extends the upper limit of the frequency range from 7 to 9 MHz.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2002

Statistics of envelope of high-frequency ultrasonic backscatter from human skin in vivo

Balasundar I. Raju; Mandayam A. Srinivasan

The statistics of envelope of high-frequency ultrasonic backscatter signals from in vivo normal human dermis and subcutaneous fat were studied. The capability of six probability distributions (Rayleigh, Rician, K, Nakagami, Weibull, and Generalized Gamma) to model empirical envelope data was studied using the Kolmogorov-Smirnov (KS) goodness of fit statistic. The parameters of all the distributions were obtained using the maximum likelihood method. It was found that the Generalized Gamma distribution with two shape parameters provided the best fit among all the distributions in terms of the KS goodness of fit. The K and Weibull distributions also modeled the envelope statistics well. The Rayleigh and Rician distributions provided poorer fits. The parameters of the Generalized Gamma distribution, however, showed a larger variability than those of the other distributions. The intersubject variability in the estimated parameters of all the distributions was found to be comparable to the intrasubject variability. Fat was seen to exhibit significantly more pre-Rayleigh behavior compared to the dermis. The parameters of the Generalized Gamma distribution also showed significant differences between the dermis at the forearm and fingertip regions.


Journal of Controlled Release | 2010

Focused ultrasound and microbubbles for enhanced extravasation

Marcel Rene Bohmer; Ceciel Chlon; Balasundar I. Raju; Chien Ting Chin; Talent I. Shevchenko; Alexander L. Klibanov

The permeability of blood vessels for albumin can be altered by using ultrasound and polymer or lipid-shelled microbubbles. The region in which the microbubbles were destroyed with focused ultrasound was quantified in gel phantoms as a function of pressure, number of cycles and type of microbubble. At 2MPa the destruction took place in a fairly wide area for a lipid-shelled agent, while for polymer-shelled agents at this setting, distinct destruction spots with a radius of only 1mm were obtained. When microbubbles with a thicker shell were used, the pressure above which the bubbles were destroyed shifts to higher values. In vivo both lipid and polymer microbubbles increased the extravasation of the albumin binding dye Evans Blue, especially in muscle leading to about 6-8% of the injected dose to extravasate per gram muscle tissue 30 min after start of the treatment, while no Evans Blue could be detected in muscle in the absence of microbubbles. Variation in the time between ultrasound treatment and Evans Blue injection, demonstrated that the time window for promoting extravasation is at least an hour at the settings used. In MC38 tumors, extravasation already occurred without ultrasound and only a trend towards enhancement with about a factor of 2 could be established with a maximum percentage injected dose per gram of 3%. Ultrasound mediated microbubble destruction especially enhances the extravasation in the highly vascularized outer part of the MC38 tumor and adjacent muscle and would, therefore, be most useful for release of, for instance, anti-angiogenic drugs.


Ultrasound in Medicine and Biology | 2001

High-frequency ultrasonic attenuation and backscatter coefficients of in vivo normal human dermis and subcutaneous fat

Balasundar I. Raju; Mandayam A. Srinivasan

In vivo attenuation and backscatter coefficients of normal human forearm dermis and subcutaneous fat were determined in the ranges 14 to 50 MHz and 14 to 34 MHz, respectively. Data were collected using three different transducers to ensure that results were independent of the measurement system. Attenuation coefficient was obtained by computing spectral slopes vs. depth, with the transducers axially translated to minimize diffraction effects. Backscatter coefficient was obtained by compensating recorded backscatter spectra for system-dependent effects and, additionally, for one transducer using the reference phantom technique. Good agreement was seen between the computed attenuation and backscatter results from the different transducers/methods. The attenuation coefficient of the forearm dermis was well described by a linear dependence with a slope that ranged between 0.08 to 0.39 (median = 0.21) dB mm(-1) MHz(-1). The backscatter coefficient of the dermis was generally in the range 10(-3) to 10(-1) Sr(-1) mm(-1) and showed an increasing trend with frequency. No significant differences in attenuation coefficient slope between the forearm dermis and fat were noted. Within the range of 14 to 34 MHz, the ratio of integrated (average) backscatter of dermis to that of fat ranged from 1.03 to 87.1 (median = 6.45), indicating significantly higher backscatter for dermis than for fat. Data were also recorded at the fingertip where the attenuation coefficient slope of the dermis was seen to be higher than that at the forearm.


Ultrasound in Medicine and Biology | 2003

Quantitative ultrasonic methods for characterization of skin lesions in vivo.

Balasundar I. Raju; Kirsty Swindells; Salvador González; Mandayam A. Srinivasan

Quantitative ultrasonic methods were studied for characterizing skin lesions in vivo using contact dermatitis as an example. The parameters studied include skin thickness, echogenicity, attenuation coefficient slope and parameters related to echo statistics (signal-to-noise ratio and shape parameters of Weibull, K and generalized gamma distributions). Data were collected using a high-frequency ultrasound (US) system (center frequency = 33 MHz). To compensate for depth-dependent diffraction effects, correction curves as a function of the distance between the transducer and the tissue were first empirically obtained. Diffraction-corrected quantitative parameters were then compared between healthy and affected skin of volunteers, who underwent patch testing for allergic and irritant contact dermatitis. A significant increase in skin thickness, decrease in echogenicity of the upper dermis and decrease in attenuation coefficient slope were found at the affected sites compared to those of healthy skin. However, no differences in parameters related to the echo statistics of the mid-dermis were found. These results indicate that a combination of quantitative ultrasonic parameters have the potential for extracting information for characterizing skin conditions.


IEEE Transactions on Biomedical Engineering | 2010

Targeted Ultrasound-Mediated Delivery of Nanoparticles: On the Development of a New HIFU-Based Therapy and Imaging Device

Ralf Seip; Chien Ting Chin; Christopher Stephen Hall; Balasundar I. Raju; Alexander Ghanem; Klaus Tiemann

Ultrasound-mediated delivery (USMD) is an active research topic, as researchers develop applications for therapeutic ultrasound in addition to thermal ablation. In USMD, ultrasound is used in conjunction with microbubbles and drugs, nanoparticles, siRNA, pDNA, stem cells, etc., to facilitate their cellular delivery and uptake using pressure and temperature-mediated mechanisms to bring about a desired therapeutic effect. To investigate the potential of targeted USMD of nanoparticles, pDNA, and stem cells for cardiovascular and other applications, a general-purpose preclinical research tool, therapy imaging probe system (TIPS) was designed. It consists of a wideband annular array, a small-animal acoustic coupler, a motorized positioning system, integrated control software for ultrasound image-guided treatment planning and execution, and triggering electronics that allow ECG and respiration-gated ultrasound exposures. TIPS was then used to enhance delivery of nanoparticles into the murine myocardium and heart vessel walls to demonstrate the feasibility of the technology, pave the way for additional basic research in cardiovascular USMD, and begin to explore the requirements that USMD devices will have to meet to be useful in a clinical setting.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2003

Robust deconvolution of high-frequency ultrasound images using higher-order spectral analysis and wavelets

Suiren Wan; Balasundar I. Raju; Mandayam A. Srinivasan

Deconvolution of high-frequency (30-40 MHz) ultrasonic images of human skin was studied in vivo. Separate one-dimensional (1-D) functions for the axial and lateral profiles were first estimated using higher-order spectral methods. Subsequently, deconvolution was implemented using a regularized inverse Wiener filtering of the wavelet and scaling coefficients that were obtained after a wavelet decomposition of the RF signals. Deconvolution was first performed in the axial direction, then in the lateral direction. The methods were applied to data obtained from the skin of 16 volunteers using three different transducers. Significant improvements in both the axial and lateral resolutions were obtained in all the cases. Features such as hair follicles in the dermis and fingerprints on the surface of the finger were more clearly displayed in the processed images compared to the original images. The results indicate that the deconvolution method using higher-order spectral methods and wavelet analysis could significantly improve the quality of high-frequency ultrasonic skin images.


internaltional ultrasonics symposium | 2009

Control and reversal of tumor growth by ultrasound activated microbubbles

Chien Ting Chin; Balasundar I. Raju; Talent I. Shevchenko; Alexander L. Klibanov

It has been known that tumor insonation after intravenous microbubble injection may lead to transient reduction of tumor blood flow. Subsequent experiments showed that repeated induction of tumor blood flow disruption may retard tumor growth. This paper reports an initial investigation of the underlying blood flow disruption phenomena and the first systematic investigation of the control of tumor growth by the combination of moderately intense ultrasound and microbubbles.

Collaboration


Dive into the Balasundar I. Raju's collaboration.

Researchain Logo
Decentralizing Knowledge