Balati Kuerbanjiang
University of York
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Balati Kuerbanjiang.
Nanotechnology | 2009
Luyang Han; Ulf Wiedwald; Balati Kuerbanjiang; P. Ziemann
Metallic nanoparticles containing 3d elements are generally susceptible to oxidation leading to a deterioration of desired properties. Here, the oxidation behavior of differently sized FePt nanoparticles is experimentally studied by x-ray photoelectron spectroscopy (XPS) and compared to a FePt reference film. For all as-prepared metallic samples the common features are the formation of Fe(3+), becoming detectable for exposures to pure oxygen above 10(6) langmuir whereas under identical conditions the Pt(0) signal is conserved. Most notably, these features are independent of particle size. Annealing at 650 degrees C, however, affects small and large FePt particles differently. While large particles as well as the reference film show a 100-1000 times enhanced resistance against oxidation, small FePt particles (diameter 5 nm) exhibit no such enhancement due to the thermal treatment. Additional XPS intensity analysis in combination with model calculations leads to an explanation of this observation in terms of Pt segregating to the surface. In large particles and films the thickness of the resulting Pt layer is sufficient to strongly impede oxidation, while in small particles this layer is incomplete and no longer provides protection against oxidation.
New Journal of Physics | 2012
Thomas Häberle; Felix Haering; Holger Pfeifer; Luyang Han; Balati Kuerbanjiang; Ulf Wiedwald; U. Herr; B. Koslowski
We introduce a simple and effective model of a commercial magnetic thin-film sensor for magnetic force microscopy (MFM), and we test the model employing buried magnetic dipoles. The model can be solved analytically in the half-space in front of the sensor tip, leading to a simple 1/R dependence of the magnetic stray field projected to the symmetry axis. The model resolves the earlier issue as to why the magnetic sensors cannot be described reasonably by a restricted multipole expansion as in the point pole approximation: the point pole model must be extended to incorporate a ?lower-order? pole, which we term ?pseudo-pole?. The near-field dependence (?R?1) turns into the well-known and frequently used dipole behavior (?R?3) if the separation, R, exceeds the height of the sensor. Using magnetic nanoparticles (average diameter 18?nm) embedded in a SiO cover as dipolar point probes, we show that the force gradient?distance curves and magnetic images fit almost perfectly to the proposed model. The easy axis of magnetization of single nanoparticles is successfully deduced from these magnetic images. Our model paves the way for quantitative MFM, at least if the sensor and the sample are independent.
Applied Physics Letters | 2015
Tomohiro Koyama; Aya Obinata; Yuki Hibino; A. Hirohata; Balati Kuerbanjiang; Vlado K. Lazarov; Daichi Chiba
The Pt thickness dependence of the Curie temperature of perpendicularly magnetized ultra-thin (Pt/)Co/Pt films has been investigated by magnetization measurements. The Curie temperature and the saturation magnetic moment increase with the Co layer thickness and even with the Pt layer thickness. The Curie temperature is found to have linear dependence on the total magnetic moment of the system and the coefficients of the linear fits are almost identical, regardless of whether the thicknesses of the ferromagnetic Co layer or the Pt layer are varied. The Curie temperature also increases with the magnetic anisotropy, but no systematic dependence is observed. These results suggest that the magnetic moment induced in the Pt layer by the ferromagnetic proximity effect plays a significant role in determining the Curie temperatures of such two-dimensional ferromagnetic systems.
Applied Physics Letters | 2015
Zlatko Nedelkoski; Philip J. Hasnip; Ana M. Sanchez; Balati Kuerbanjiang; Edward Higgins; Mikihiko Oogane; A. Hirohata; Gavin R. Bell; Vlado K. Lazarov
Using density functional theory calculations motivated by aberration-corrected electron microscopy, we show how the atomic structure of a fully epitaxial Co2MnSi/Ag interfaces controls the local spin-polarization. The calculations show clear difference in spin-polarization at Fermi level between the two main types: bulk-like terminated Co/Ag and Mn-Si/Ag interfaces. Co/Ag interface spin-polarization switches sign from positive to negative, while in the case of Mn-Si/Ag, it is still positive but reduced. Cross-sectional atomic structure analysis of Co2MnSi/Ag interface, part of a spin-valve device, shows that the interface is determined by an additional layer of either Co or Mn. The presence of an additional Mn layer induces weak inverse spin-polarisation (−7%), while additional Co layer makes the interface region strongly inversely spin-polarized (−73%). In addition, we show that Ag diffusion from the spacer into the Co2MnSi electrode does not have a significant effect on the overall Co2MnSi /Ag performance.
Applied Physics Letters | 2016
Balati Kuerbanjiang; Zlatko Nedelkoski; Demie Kepaptsoglou; Arsham Ghasemi; Stephanie E. Glover; Shinya Yamada; Thomas Saerbeck; Quentin M. Ramasse; Philip J. Hasnip; Thomas P. A. Hase; Gavin R. Bell; Kohei Hamaya; A. Hirohata; Vlado K. Lazarov
We show that Co2FeAl0.5Si0.5film deposited on Si(111) has a single crystal structure and twin related epitaxial relationship with the substrate. Sub-nanometer electron energy loss spectroscopy shows that in a narrow interface region there is a mutual inter-diffusion dominated by Si and Co. Atomic resolution aberration-corrected scanning transmission electron microscopy reveals that the film has B2 ordering. The film lattice structure is unaltered even at the interface due to the substitutional nature of the intermixing. First-principles calculations performed using structural models based on the aberration corrected electron microscopy show that the increased Si incorporation in the film leads to a gradual decrease of the magnetic moment as well as significant spin-polarization reduction. These effects can have significant detrimental role on the spin injection from the Co2FeAl0.5Si0.5 film into the Si substrate, besides the structural integrity of this junction.
Scientific Reports | 2016
Daniel Gilks; Zlatko Nedelkoski; Leonardo Lari; Balati Kuerbanjiang; Kosuke Matsuzaki; Tomofumi Susaki; Demie Kepaptsoglou; Quentin M. Ramasse; R. F. L. Evans; Keith P. McKenna; Vlado K. Lazarov
We report the existence of a stable twin defect in Fe3O4 thin films. By using aberration corrected scanning transmission electron microscopy and spectroscopy the atomic structure of the twin boundary has been determined. The boundary is confined to the (111) growth plane and it is non-stoichiometric due to a missing Fe octahedral plane. By first principles calculations we show that the local atomic structural configuration of the twin boundary does not change the nature of the superexchange interactions between the two Fe sublattices across the twin grain boundary. Besides decreasing the half-metallic band gap at the boundary the altered atomic stacking at the boundary does not change the overall ferromagnetic (FM) coupling between the grains.
Scientific Reports | 2016
Zlatko Nedelkoski; Balati Kuerbanjiang; Stephanie E. Glover; Ana M. Sanchez; Demie Kepaptsoglou; Arsham Ghasemi; Christopher W. Burrows; Shinya Yamada; Kohei Hamaya; Quentin M. Ramasse; Philip J. Hasnip; Thomas P. A. Hase; Gavin R. Bell; A. Hirohata; Vlado K. Lazarov
Halfmetal-semiconductor interfaces are crucial for hybrid spintronic devices. Atomically sharp interfaces with high spin polarisation are required for efficient spin injection. In this work we show that thin film of half-metallic full Heusler alloy Co2FeSi0.5Al0.5 with uniform thickness and B2 ordering can form structurally abrupt interface with Ge(111). Atomic resolution energy dispersive X-ray spectroscopy reveals that there is a small outdiffusion of Ge into specific atomic planes of the Co2FeSi0.5Al0.5 film, limited to a very narrow 1 nm interface region. First-principles calculations show that this selective outdiffusion along the Fe-Si/Al atomic planes does not change the magnetic moment of the film up to the very interface. Polarized neutron reflectivity, x-ray reflectivity and aberration-corrected electron microscopy confirm that this interface is both magnetically and structurally abrupt. Finally, using first-principles calculations we show that this experimentally realised interface structure, terminated by Co-Ge bonds, preserves the high spin polarization at the Co2FeSi0.5Al0.5/Ge interface, hence can be used as a model to study spin injection from half-metals into semiconductors.
AIP Advances | 2016
Yu Yan; Cong Lu; Hongqing Tu; Xianyang Lu; Wenqing Liu; Junlin Wang; Lei Ye; Iain Will; Balati Kuerbanjiang; Vlado K. Lazarov; Jing Wu; Johnny Wong; Biao You; Jun Du; Rong Zhang; Yongbing Xu
CoFeB amorphous films have been synthesized on GaAs(100) and studied with X-ray magnetic circular dichroism (XMCD) and transmission electron microscopy (TEM). We have found that the ratios of the orbital to spin magnetic moments of both the Co and Fe in the ultrathin amorphous film have been enhanced by more than 300% compared with those of the bulk crystalline Co and Fe, and specifically a large orbital moment of 0.56 μB from the Co atoms has been observed and at the same time the spin moment of the Co atoms remains comparable to that of the bulk hcp Co. The results indicate that the large uniaxial magnetic anisotropy (UMA) observed in the ultrathin CoFeB film on GaAs(100) is related to the enhanced spin-orbital coupling of the Co atoms in the CoFeB. This work offers experimental evidences of the correlation between the UMA and the element specific spin and orbital moments in the CoFeB amorphous film on the GaAs(100) substrate, which is of significance for spintronics applications.
Beilstein Journal of Nanotechnology | 2013
U. Herr; Balati Kuerbanjiang; Cahit Benel; Giorgos Papageorgiou; Manuel R. Gonçalves; Johannes Boneberg; Paul Leiderer; P. Ziemann; Peter Marek; Horst Hahn
Summary One of the big challenges of the 21st century is the utilization of nanotechnology for energy technology. Nanoscale structures may provide novel functionality, which has been demonstrated most convincingly by successful applications such as dye-sensitized solar cells introduced by M. Grätzel. Applications in energy technology are based on the transfer and conversion of energy. Following the example of photosynthesis, this requires a combination of light harvesting, transfer of energy to a reaction center, and conversion to other forms of energy by charge separation and transfer. This may be achieved by utilizing hybrid nanostructures, which combine metallic and nonmetallic components. Metallic nanostructures can interact strongly with light. Plasmonic excitations of such structures can cause local enhancement of the electrical field, which has been utilized in spectroscopy for many years. On the other hand, the excited states in metallic structures decay over very short lifetimes. Longer lifetimes of excited states occur in nonmetallic nanostructures, which makes them attractive for further energy transfer before recombination or relaxation sets in. Therefore, the combination of metallic nanostructures with nonmetallic materials is of great interest. We report investigations of hybrid nanostructured model systems that consist of a combination of metallic nanoantennas (fabricated by nanosphere lithography, NSL) and oxide nanoparticles. The oxide particles were doped with rare-earth (RE) ions, which show a large shift between absorption and emission wavelengths, allowing us to investigate the energy-transfer processes in detail. The main focus is on TiO2 nanoparticles doped with Eu3+, since the material is interesting for applications such as the generation of hydrogen by photocatalytic splitting of water molecules. We use high-resolution techniques such as confocal fluorescence microscopy for the investigation of energy-transfer processes. The experiments are supported by simulations of the electromagnetic field enhancement in the vicinity of well-defined nanoantennas. The results show that the presence of the nanoparticle layer can modify the field enhancement significantly. In addition, we find that the fluorescent intensities observed in the experiments are affected by agglomeration of the nanoparticles. In order to further elucidate the possible influence of agglomeration and quenching effects in the vicinity of the nanoantennas, we have used a commercial organic pigment containing Eu, which exhibits an extremely narrow particle size distribution and no significant agglomeration. We demonstrate that quenching of the Eu fluorescence can be suppressed by covering the nanoantennas with a 10 nm thick SiOx layer.
Journal of Physics: Condensed Matter | 2016
Zlatko Nedelkoski; Demie Kepaptsoglou; Arsham Ghasemi; Balati Kuerbanjiang; Philip J. Hasnip; Shinya Yamada; Kohei Hamaya; Quentin M. Ramasse; A. Hirohata; Vlado K. Lazarov
By using first-principles calculations we show that the spin-polarization reverses its sign at atomically abrupt interfaces between the half-metallic Co2(Fe,Mn)(Al,Si) and Si(1 1 1). This unfavourable spin-electronic configuration at the Fermi-level can be completely removed by introducing a Si-Co-Si monolayer at the interface. In addition, this interfacial monolayer shifts the Fermi-level from the valence band edge close to the conduction band edge of Si. We show that such a layer is energetically favourable to exist at the interface. This was further confirmed by direct observations of CoSi2 nano-islands at the interface, by employing atomic resolution scanning transmission electron microscopy.