Balázs Gusztáv Mende
Hungarian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Balázs Gusztáv Mende.
bioRxiv | 2015
Anna Szécsényi-Nagy; Guido Brandt; Wolfgang Haak; Victoria Keerl; János Jakucs; Sabine Möller-Rieker; Kitti Köhler; Balázs Gusztáv Mende; Krisztián Oross; Tibor Marton; Anett Osztás; Viktória Kiss; Marc Fecher; György Pálfi; Erika Molnár; Katalin Sebők; András Czene; Tibor Paluch; Mario Šlaus; Mario Novak; Nives Pećina-Šlaus; Brigitta Ősz; Vanda Voicsek; Gábor A. Tóth; Bernd Kromer; Eszter Bánffy; Kurt W. Alt
Farming was established in Central Europe by the Linearbandkeramik culture (LBK), a well-investigated archaeological horizon, which emerged in the Carpathian Basin, in todays Hungary. However, the genetic background of the LBK genesis is yet unclear. Here we present 9 Y chromosomal and 84 mitochondrial DNA profiles from Mesolithic, Neolithic Starčevo and LBK sites (seventh/sixth millennia BC) from the Carpathian Basin and southeastern Europe. We detect genetic continuity of both maternal and paternal elements during the initial spread of agriculture, and confirm the substantial genetic impact of early southeastern European and Carpathian Basin farming cultures on Central European populations of the sixth–fourth millennia BC. Comprehensive Y chromosomal and mitochondrial DNA population genetic analyses demonstrate a clear affinity of the early farmers to the modern Near East and Caucasus, tracing the expansion from that region through southeastern Europe and the Carpathian Basin into Central Europe. However, our results also reveal contrasting patterns for male and female genetic diversity in the European Neolithic, suggesting a system of patrilineal descent and patrilocal residential rules among the early farmers.
Annals of Human Genetics | 2008
Bernadett Csányi; Erika Bogácsi-Szabó; Gy Tömöry; Ágnes Czibula; Katalin Priskin; Aranka Csosz; Balázs Gusztáv Mende; K. Csete; A. Zsolnai; E. K. Conant; C. S. Downes; István Raskó
The Hungarian population belongs linguistically to the Finno‐Ugric branch of the Uralic family. The Tat C allele is an interesting marker in the Finno‐Ugric context, distributed in all the Finno‐Ugric‐speaking populations, except for Hungarians. This question arises whether the ancestral Hungarians, who settled in the Carpathian Basin, harbored this polymorphism or not. 100 men from modern Hungary, 97 Szeklers (a Hungarian‐speaking population from Transylvania), and 4 archaeologically Hungarian bone samples from the 10th century were studied for this polymorphism. Among the modern individuals, only one Szekler carries the Tat C allele, whereas out of the four skeletal remains, two possess the allele. The latter finding, even allowing for the low sample number, appears to indicate a Siberian lineage of the invading Hungarians, which later has largely disappeared.
Nature | 2017
Mark Lipson; Anna Szécsényi-Nagy; Swapan Mallick; Annamária Pósa; Balázs Stégmár; Victoria Keerl; Nadin Rohland; Kristin Stewardson; Matthew Ferry; Megan Michel; Jonas Oppenheimer; Nasreen Broomandkhoshbacht; Eadaoin Harney; Bastien Llamas; Balázs Gusztáv Mende; Kitti Köhler; Krisztián Oross; Mária Bondár; Tibor Marton; Anett Osztás; János Jakucs; Tibor Paluch; Ferenc Horváth; Piroska Csengeri; Judit Koós; Katalin Sebők; Alexandra Anders; Pál Raczky; Judit Regenye; Judit P. Barna
Ancient DNA studies have established that Neolithic European populations were descended from Anatolian migrants who received a limited amount of admixture from resident hunter-gatherers. Many open questions remain, however, about the spatial and temporal dynamics of population interactions and admixture during the Neolithic period. Here we investigate the population dynamics of Neolithization across Europe using a high-resolution genome-wide ancient DNA dataset with a total of 180 samples, of which 130 are newly reported here, from the Neolithic and Chalcolithic periods of Hungary (6000–2900 bc, n = 100), Germany (5500–3000 bc, n = 42) and Spain (5500–2200 bc, n = 38). We find that genetic diversity was shaped predominantly by local processes, with varied sources and proportions of hunter-gatherer ancestry among the three regions and through time. Admixture between groups with different ancestry profiles was pervasive and resulted in observable population transformation across almost all cultural transitions. Our results shed new light on the ways in which gene flow reshaped European populations throughout the Neolithic period and demonstrate the potential of time-series-based sampling and modelling approaches to elucidate multiple dimensions of historical population interactions.
PLOS ONE | 2016
Veronika Csákyová; Anna Szécsényi-Nagy; Aranka Csősz; Melinda Nagy; Gabriel Fusek; Miroslav Bauer; Balázs Gusztáv Mende; Pavol Makovický; Mária Bauerová
The genetic composition of the medieval populations of Central Europe has been poorly investigated to date. In particular, the region of modern-day Slovakia is a blank spot in archaeogenetic research. This paper reports the study of mitochondrial DNA (mtDNA) in ancient samples from the 9th–12th centuries originating from the cemeteries discovered in Nitra-Šindolka and Čakajovce, located in western Slovakia (Central Europe). This geographical region is interesting to study because its medieval multi-ethnic population lived in the so-called contact zone of the territory of the Great Moravian and later Hungarian state formations. We described 16 different mtDNA haplotypes in 19 individuals, which belong to the most widespread European mtDNA haplogroups: H, J, T, U and R0. Using comparative statistical and population genetic analyses, we showed the differentiation of the European gene pool in the medieval period. We also demonstrated the heterogeneous genetic characteristics of the investigated population and its affinity to the populations of modern Europe.
bioRxiv | 2017
Mark Lipson; Anna Szécsényi-Nagy; Swapan Mallick; Annamária Pósa; Balázs Stégmár; Victoria Keerl; Nadin Rohland; Kristin Stewardson; Matthew Ferry; Megan Michel; Jonas Oppenheimer; Nasreen Broomandkhoshbacht; Eadaoin Harney; Bastien Llamas; Balázs Gusztáv Mende; Kitti Köhler; Krisztián Oross; Mária Bondár; Tibor Marton; Anett Osztás; János Jakucs; Tibor Paluch; Ferenc Horváth; Piroska Csengeri; Judit Koós; Katalin Sebok; Alexandra Anders; Pál Raczky; Judit Regenye; Judit P. Barna
Ancient DNA studies have established that European Neolithic populations were descended from Anatolian migrants who received a limited amount of admixture from resident hunter-gatherers. Many open questions remain, however, about the spatial and temporal dynamics of population interactions and admixture during the Neolithic period. Using the highest-resolution genomewide ancient DNA data set assembled to date—a total of 177 samples, 127 newly reported here, from the Neolithic and Chalcolithic of Hungary (6000–2900 BCE, n = 98), Germany (5500–3000 BCE, n = 42), and Spain (5500–2200 BCE, n = 37)—we investigate the population dynamics of Neolithization across Europe. We find that genetic diversity was shaped predominantly by local processes, with varied sources and proportions of hunter-gatherer ancestry among the three regions and through time. Admixture between groups with different ancestry profiles was pervasive and resulted in observable population transformation across almost all cultural transitions. Our results shed new light on the ways that gene flow reshaped European populations throughout the Neolithic period and demonstrate the potential of time-series-based sampling and modeling approaches to elucidate multiple dimensions of historical population interactions.
Mitochondrial DNA | 2014
Klara Pentelenyi; Viktoria Remenyi; Anikó Gál; György Máté Milley; Aranka Csosz; Balázs Gusztáv Mende; Mária Judit Molnár
Abstract A 9-bp deletion of the mtDNA is known as an anthropological marker of people with East-Asian origin. This 9-bp mtDNA deletion was analyzed in 1073 Hungarians with suspected mitochondrial disease and in 468 healthy control individuals. Fourteen cases with the 9-bp deletion were found in the cohort of mitochondrial patients, and one individual from 468 controls. In six cases the 9-bp deletion was present together with pathogenic major deletions in the mitochondrial genome. In one patient we found a frame shift mutation in the D-loop region, and in another family a pathogenic m.8322 A > G mutation in the tRNALys gene. Although the 9-bp deletion is common in the populations of the Pacific region and Asia, it is present in the Hungarian population as well. This 9-bp deletion may induce instability of the mtDNA and may provoke the introduction of other pathogenic mutations.
Nature Communications | 2018
Carlos Eduardo G Amorim; Stefania Vai; Cosimo Posth; Alessandra Modi; István Koncz; Susanne Hakenbeck; Maria Cristina La Rocca; Balázs Gusztáv Mende; Dean Bobo; Walter Pohl; Luisella Pejrani Baricco; Elena Bedini; Paolo Francalacci; Caterina Giostra; Tivadar Vida; Daniel Winger; Uta von Freeden; Silvia Ghirotto; Martina Lari; Guido Barbujani; Johannes Krause; David Caramelli; Patrick J. Geary; Krishna R. Veeramah
Despite centuries of research, much about the barbarian migrations that took place between the fourth and sixth centuries in Europe remains hotly debated. To better understand this key era that marks the dawn of modern European societies, we obtained ancient genomic DNA from 63 samples from two cemeteries (from Hungary and Northern Italy) that have been previously associated with the Longobards, a barbarian people that ruled large parts of Italy for over 200 years after invading from Pannonia in 568 CE. Our dense cemetery-based sampling revealed that each cemetery was primarily organized around one large pedigree, suggesting that biological relationships played an important role in these early medieval societies. Moreover, we identified genetic structure in each cemetery involving at least two groups with different ancestry that were very distinct in terms of their funerary customs. Finally, our data are consistent with the proposed long-distance migration from Pannonia to Northern Italy.The Longobards invaded and conquered much of Italy after the fall of the Western Roman Empire. Here, the authors sequence and analyze ancient genomic DNA from 63 samples from two cemeteries associated with the Longobards and identify kinship networks and two distinct genetic and cultural groups in each.
Tuberculosis | 2015
Annamária Pósa; Frank Maixner; Balázs Gusztáv Mende; Kitti Köhler; Anett Osztás; Christophe Sola; Olivier Dutour; Muriel Masson; Erika Molnár; György Pálfi; Albert Zink
Alsónyék-Bátaszék in Southern Hungary is one of the largest late Neolithic settlements and cemeteries excavated in Central Europe. In total, 2359 burials from the Late Neolithic - Early Copper Age Lengyel culture were found between 2006 and 2009 [1]. Anthropological investigations previously carried out on individuals from this site revealed an interesting paleopathological case of tuberculosis in the form of Potts disease dated to the early 5(th) millennium BC. In this study, selected specimens from this osteoarcheological series were subjected to paleomicrobiological analysis to establish the presence of MTBC bacteria. As all individuals showing clear osteological signs of TB infection belonged to a single grave group, 38 individuals from this grave group were analysed. The sample included the case of Potts disease as well as individuals both with and without osseous TB manifestations. The detection of TB DNA in the individual with Potts disease provided further evidence for the occurrence of TB in Neolithic populations of Europe. Moreover, our molecular analysis indicated that several other individuals of the same grave group were also infected with TB, opening the possibility for further analyses of this unique Neolithic skeletal series.
bioRxiv | 2018
Stefania Vai; Andrea Brunelli; Alessandra Modi; Francesca Tassi; Chiara Vergata; Elena Pilli; Martina Lari; Roberta Rosa Susca; Caterina Giostra; Luisella Pejrani Baricco; Elena Bedini; István Koncz; Tivadar Vidar; Balázs Gusztáv Mende; Daniel Winger; Zuzana Loskotova; Krishna R. Veeramah; Patrick J. Geary; Guido Barbujani; David Caramelli; Silvia Ghirotto
From the first century AD, Europe has been interested by population movements, commonly known as Barbarian migrations. Among these processes, the one involving the Longobard culture interested a vast region, but its dynamics and demographic impact remains largely unknown. Here we report 87 new complete mitochondrial sequences coming from nine early-medieval cemeteries located along the area interested by the Longobard migration (Czech Republic, Hungary and Italy). From the same locations, we sampled necropolises characterized by cultural markers associated with the Longobard culture (LC) and coeval burials where no such markers were found (NLC). Population genetics analysis and ABC modeling highlighted a similarity between LC individuals, as reflected by a certain degree of genetic continuity between these groups, that reached 70% among Hungary and Italy. Models postulating a contact between LC and NLC communities received also high support, indicating a complex dynamics of admixture in medieval Europe.
bioRxiv | 2018
Veronika Csáky; Dániel Gerber; István Koncz; Gergely Csiky; Balázs Gusztáv Mende; Antónia Marcsik; Erika Molnár; György Pálfi; András Gulyás; Bernadett Kovacsóczy; Gabriella M. Lezsák; Gábor Lőrinczy; Anna Szécsényi-Nagy; Tivadar Vida
After 568 AD the nomadic Avars settled in the Carpathian Basin and founded their empire, which was an important force in Central Europe until the beginning of the 9th century AD. The Avar elite was probably of Inner Asian origin; its identification with the Rourans (who ruled the region of today’s Mongolia and North China in the 4th-6th centuries AD) is widely accepted in the historical research. Here, we study the whole mitochondrial genomes of twenty-three 7th century and two 8th century AD individuals from a well-characterised Avar elite group of burials excavated in Hungary. Most of them were buried with high value prestige artefacts and their skulls showed Mongoloid morphological traits. The majority (64%) of the studied samples’ mitochondrial DNA variability belongs to Asian haplogroups (C, D, F, M, R, Y and Z). This Avar elite group shows affinities to several ancient and modern Inner Asian populations. The genetic results verify the historical thesis on the Inner Asian origin of the Avar elite, as not only a military retinue consisting of armed men, but an endogamous group of families migrated. This correlates well with records on historical nomadic societies where maternal lineages were as important as paternal descent.Abstract After 568 AD the Avars settled in the Carpathian Basin and founded the Avar Qaganate that was an important power in Central Europe until the 9th century. Part of the Avar society was probably of Asian origin, however the localisation of their homeland is hampered by the scarcity of historical and archaeological data. Here, we study mitogenome and Y chromosomal STR variability of twenty-six individuals, a number of them representing a well-characterised elite group buried at the centre of the Carpathian Basin more than a century after the Avar conquest. The studied group has maternal and paternal genetic affinities to several ancient and modern East-Central Asian populations. The majority of the mitochondrial DNA variability represents Asian haplogroups (C, D, F, M, R, Y and Z). The Y-STR variability of the analysed elite males belongs only to five lineages, three N-Tat with mostly Asian parallels and two Q haplotypes. The homogeneity of the Y chromosomes reveals paternal kinship as a cohesive force in the organisation of the Avar elite strata on both social and territorial level. Our results indicate that the Avar elite arrived in the Carpathian Basin as a group of families, and remained mostly endogamous for several generations after the conquest.