Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Balázs Hauser is active.

Publication


Featured researches published by Balázs Hauser.


Anesthesia & Analgesia | 2005

Nitric Oxide Synthase Inhibition in Sepsis? Lessons Learned from Large-animal Studies

Balázs Hauser; Hendrik Bracht; Martin Matejovic; Peter Radermacher; Balasubramanian Venkatesh

Nitric Oxide (NO) plays a controversial role in the pathophysiology of sepsis and septic shock. Its vasodilatory effects are well known, but it also has pro- and antiinflammatory properties, assumes crucial importance in antimicrobial host defense, may act as an oxidant as well as an antioxidant, and is said to be a “vital poison” for the immune and inflammatory network. Large amounts of NO and peroxynitrite are responsible for hypotension, vasoplegia, cellular suffocation, apoptosis, lactic acidosis, and ultimately multiorgan failure. Therefore, NO synthase (NOS) inhibitors were developed to reverse the deleterious effects of NO. Studies using these compounds have not met with uniform success however, and a trial using the nonselective NOS inhibitor NG-methyl-l-arginine hydrochloride was terminated prematurely because of increased mortality in the treatment arm despite improved shock resolution. Thus, the issue of NOS inhibition in sepsis remains a matter of debate. Several publications have emphasized the differences concerning clinical applicability of data obtained from unresuscitated, hypodynamic rodent models using a pretreatment approach versus resuscitated, hyperdynamic models in high-order species using posttreatment approaches. Therefore, the present review focuses on clinically relevant large-animal studies of endotoxin or living bacteria-induced, hyperdynamic models of sepsis that integrate standard day-to-day care resuscitative measures.


Shock | 2011

Effects of intravenous sulfide during porcine aortic occlusion-induced kidney ischemia/reperfusion injury.

Florian Simon; Angelika Scheuerle; Michael Gröger; Bettina Stahl; Ulrich Wachter; Josef Vogt; Günter Speit; Balázs Hauser; Peter Møller; Enrico Calzia; Csaba Szabó; Hubert Schelzig; Michael Georgieff; Peter Radermacher; Florian Wagner

In rodents, inhaled H2S and injection of H2S donors protected against kidney ischemia/reperfusion (I/R) injury. During porcine aortic occlusion, the H2S donor Na2S (sulfide) reduced energy expenditure and decreased the noradrenaline requirements needed to maintain hemodynamic targets during early reperfusion. Therefore, we tested the hypothesis whether sulfide pretreatment may also ameliorate organ function in porcine aortic occlusion-induced kidney I/R injury. Anesthetized, ventilated, and instrumented pigs randomly received either sulfide or vehicle and underwent 90 min of kidney ischemia using intraaortic balloon-occlusion, and 8 h of reperfusion. During reperfusion, noradrenaline was titrated to maintain blood pressure at baseline levels. Sulfide attenuated the fall in creatinine clearance and the rise in creatinine blood levels, whereas renal blood flow and fractional Na+ excretion were comparable. Sulfide also lowered the blood IL-6, IL-1&bgr;, and nitrite + nitrate concentrations, which coincided with reduced kidney oxidative DNA base damage and iNOS expression, and attenuated glomerular histological injury as assessed by the incidence of glomerular tubularization. While expression of heme oxygenase 1 and cleaved caspase 3 did not differ, sulfide reduced the expression Bcl-xL and increased the activation of nuclear transcription factor &kgr;B. During porcine aortic occlusion-induced kidney I/R injury, sulfide pretreatment attenuated tissue injury and organ dysfunction as a result of reduced inflammation and oxidative and nitrosative stress. The higher nuclear transcription factor &kgr;B activation was probably due to the drop in temperature.


Critical Care Medicine | 2005

Ethyl pyruvate improves systemic and hepatosplanchnic hemodynamics and prevents lipid peroxidation in a porcine model of resuscitated hyperdynamic endotoxemia.

Balázs Hauser; Jochen Kick; Ulrich Ehrmann; Maura Albicini; Josef Vogt; Ulrich Wachter; Uwe B. Brückner; Mitchell P. Fink; Peter Radermacher; Hendrik Bracht

Objective:To investigate the systemic, pulmonary, and hepatosplanchnic hemodynamic and metabolic effects of delayed treatment with ethyl pyruvate in a long-term porcine model of hyperdynamic endotoxemia. Design:Prospective, randomized, controlled experimental study with repeated measures. Setting:Investigational animal laboratory. Subjects:Anesthetized, mechanically ventilated, and instrumented pigs. Interventions:After 12 hrs of continuous infusion of lipopolysaccharide and hydroxyethyl starch to keep mean arterial pressure >60 mm Hg, swine randomly received placebo (Ringer’s solution; control group, n = 11) or ethyl pyruvate in lactated Ringer’s solution (n = 8; 0.03 g·kg−1 loading dose over 10 mins, thereafter 0.03 g·kg−1hr−1 for 12 hrs). Measurements and Main Results:Whereas mean arterial pressure significantly decreased in control animals, mean arterial pressure was maintained at the baseline level in pigs treated with ethyl pyruvate. Global oxygen uptake was comparable, so that the trend toward a higher oxygen transport and the significantly higher mixed venous hemoglobin oxygen saturation resulted in a significantly lower oxygen extraction in the ethyl pyruvate group. Ethyl pyruvate reduced intrapulmonary venous admixture and resulted in significantly greater Pao2/Fio2 ratios. Despite comparable urine production in the two groups during the first 18 hrs of endotoxemia, ethyl pyruvate significantly increased diuresis during the last 6 hrs of the study. Lipopolysaccharide-induced systemic and regional venous metabolic acidosis was significantly ameliorated by ethyl pyruvate. Endotoxemia increased both blood nitrate + nitrite and isoprostane concentrations, and ethyl pyruvate attenuated the response of these markers of nitric oxide production and lipid peroxidation. Conclusions:Ethyl pyruvate infusion resulted in improved hemodynamic stability and ameliorated acid-base derangements induced by chronic endotoxemia in pigs. Reduced oxidative stress and an decreased nitric oxide release probably contributed to these effects.


Critical Care | 2009

Comparison of cardiac, hepatic, and renal effects of arginine vasopressin and noradrenaline during porcine fecal peritonitis: a randomized controlled trial

Florian Simon; Ricardo Giudici; Angelika Scheuerle; Michael Gröger; Josef Vogt; Ulrich Wachter; Franz Ploner; Michael K. Georgieff; Peter Møller; Regent Laporte; Peter Radermacher; Enrico Calzia; Balázs Hauser

IntroductionInfusing arginine vasopressin (AVP) in vasodilatory shock usually decreases cardiac output and thus systemic oxygen transport. It is still a matter of debate whether this vasoconstriction impedes visceral organ blood flow and thereby causes organ dysfunction and injury. Therefore, we tested the hypothesis whether low-dose AVP is safe with respect to liver, kidney, and heart function and organ injury during resuscitated septic shock.MethodsAfter intraperitoneal inoculation of autologous feces, 24 anesthetized, mechanically ventilated, and instrumented pigs were randomly assigned to noradrenaline alone (increments of 0.05 μg/kg/min until maximal heart rate of 160 beats/min; n = 12) or AVP (1 to 5 ng/kg/min; supplemented by noradrenaline if the maximal AVP dosage failed to maintain mean blood pressure; n = 12) to treat sepsis-associated hypotension. Parameters of systemic and regional hemodynamics (ultrasound flow probes on the portal vein and hepatic artery), oxygen transport, metabolism (endogenous glucose production and whole body glucose oxidation derived from blood glucose isotope and expiratory 13CO2/12CO2 enrichment during 1,2,3,4,5,6-13C6-glucose infusion), visceral organ function (blood transaminase activities, bilirubin and creatinine concentrations, creatinine clearance, fractional Na+ excretion), nitric oxide (exhaled NO and blood nitrate + nitrite levels) and cytokine production (interleukin-6 and tumor necrosis factor-α blood levels), and myocardial function (left ventricular dp/dtmax and dp/dtmin) and injury (troponin I blood levels) were measured before and 12, 18, and 24 hours after peritonitis induction. Immediate post mortem liver and kidney biopsies were analysed for histomorphology (hematoxylin eosin staining) and apoptosis (TUNEL staining).ResultsAVP decreased heart rate and cardiac output without otherwise affecting heart function and significantly decreased troponin I blood levels. AVP increased the rate of direct, aerobic glucose oxidation and reduced hyperlactatemia, which coincided with less severe kidney dysfunction and liver injury, attenuated systemic inflammation, and decreased kidney tubular apoptosis.ConclusionsDuring well-resuscitated septic shock low-dose AVP appears to be safe with respect to myocardial function and heart injury and reduces kidney and liver damage. It remains to be elucidated whether this is due to the treatment per se and/or to the decreased exogenous catecholamine requirements.


Critical Care Medicine | 2004

Systemic, pulmonary, and hepatosplanchnic effects of N-acetylcysteine during long-term porcine endotoxemia

Damian Vassilev; Balázs Hauser; Hendrik Bracht; Zsolt Iványi; Michael Schoaff; Josef Vogt; Ulrich Wachter; Hubert Schelzig; Michael K. Georgieff; Uwe B. Brückner; Peter Radermacher; Gebhard Fröba

ObjectiveControversial data have been reported on the effects of N-acetylcysteine in patients with septic shock. We therefore investigated the systemic, pulmonary, and hepatosplanchnic hemodynamic, gas exchange, and metabolic effects of N-acetylcysteine during long-term, volume-resuscitated, hyperdynamic porcine endotoxemia, which mimics the features of hyperdynamic human sepsis. DesignProspective, randomized, controlled experimental study. SettingInvestigational animal laboratory. SubjectsEighteen pigs were randomized to receive endotoxin alone (controls, n = 9) or endotoxin plus N-acetylcysteine (n = 9). InterventionsAnesthetized, mechanically ventilated, and instrumented animals received continuous intravenous endotoxin and were resuscitated with hydroxyethylstarch to keep mean arterial pressure >60 mm Hg. After 12 hrs of endotoxemia, they were randomized to receive either placebo or N-acetylcysteine (150 mg/kg loading dose over 1 hr followed by 20 mg·kg−1·hr−1 for 11 hrs). Measurements and Main ResultsBefore as well as 12, 18, and 24 hrs after starting the endotoxin infusion, systemic, pulmonary, and hepatosplanchnic hemodynamics, oxygen exchange, and metabolism as well as nitric oxide, glutathione, and 8-isoprostane concentrations were assessed. N-acetylcysteine failed to improve any of the variables of the systemic, pulmonary, or hepatosplanchnic hemodynamics, gas exchange, and metabolism. Although N-acetylcysteine significantly elevated glutathione concentration, it did not influence the 8-isoprostane concentrations and even further reduced hepatic venous pH. ConclusionsDespite the increased glutathione concentration, N-acetylcysteine did not improve systemic, pulmonary, and hepatosplanchnic hemodynamics, oxygen exchange, and metabolism. When compared with previous reports in the literature, a different timing of N-acetylcysteine administration and/or an ongoing or even N-acetylcysteine-induced aggravation of oxidative stress may account for this result.


Shock | 2006

The PARP-1 inhibitor INO-1001 facilitates hemodynamic stabilization without affecting DNA repair in porcine thoracic aortic cross-clamping-induced ischemia/reperfusion

Balázs Hauser; Michael Gröger; Ulrich Ehrmann; Maura Albicini; Uwe B. Brückner; Hubert Schelzig; Balasubramanian Venkatesh; Hongshan Li; Csaba Szabó; Günter Speit; Peter Radermacher; Jochen Kick

Inhibition of poly (ADP-ribose) polymerase 1 (PARP-1) improved hemodynamics and organ function in various shock models induced by sepsis or ischemia/reperfusion. PARP-1, however, is also referred to play a pivotal role for the maintenance of genomic integrity. Therefore, we investigated the effect of the PARP-1 blocker INO-1001 on hemodynamics, kidney function, and DNA damage and repair during porcine thoracic aortic cross-clamping. The animals underwent 45 min of aortic cross-clamping after receiving vehicle (n = 9) or i.v. INO-1001 (n = 9; total dose, 4 mg·kg−1, administered both before clamping and during reperfusion), data were recorded before clamping, before declamping, and 2 and 4 h after declamping. During reperfusion, continuous i.v. norepinephrine was incrementally adjusted to maintain blood pressure greater than or equal to 80% of the preclamping level. The plasma INO-1001 levels analyzed with high-pressure liquid chromatography were 1 to 1.4 &mgr;mol/L and 0.4 to 0.6 &mgr;mol/L before and after clamping, respectively. Although INO-1001-treated animals required less norepinephrine support, kidney function was comparable in the 2 groups. There was no intergroup difference either in the time course of DNA damage and repair (comet assay) as assessed both in vivo in whole blood before surgery, before clamping, before declamping, 2 h after declamping, and ex vivo in isolated lymphocytes (Ficoll gradient) sampled immediately before clamping and analyzed before, immediately, and 1 and 2 h after exposure to 4 bar 100% O2 for 2 h. There was no difference either in the expression of the cyclin-dependent kinase inhibitor gene, p27, in the kidney (immunohistochemistry). The reduced norepinephrine requirements during reperfusion suggest a positive inotropic effect of INO-1001, as demonstrated by other authors. In our model, INO-1001 proved to be safe with respect to DNA repair.


Critical Care Medicine | 2009

Hemodynamic, metabolic, and organ function effects of pure oxygen ventilation during established fecal peritonitis-induced septic shock.

Balázs Hauser; Eberhard Barth; Gabriele Bassi; Florian Simon; Michael Gröger; Sukru Oter; Günter Speit; Franz Ploner; Peter Møller; Ulrich Wachter; Josef Vogt; Martin Matejovic; Enrico Calzia; Michael K. Georgieff; Peter Radermacher; Dirk M. Maybauer

Objective:To test the hypothesis whether pure oxygen ventilation is equally safe and beneficial in fully developed fecal peritonitis-induced septic shock as hyperoxia initiated at the induction of sepsis. Design:Prospective, randomized, controlled, experimental study with repeated measures. Setting:Animal research laboratory at a university medical school. Subjects:Twenty anesthetized, mechanically ventilated, and instrumented pigs. Interventions:Twelve hours after induction of fecal peritonitis by inoculation of autologous feces, swine, which were resuscitated with hydroxyethyl starch and norepinephrine to maintain mean arterial pressure at baseline values, were ventilated randomly with an Fio2 required to keep Sao2 >90% (controls: n = 10) or Fio2 1.0 (hyperoxia, n = 10) during the next 12 hrs. Measurements and Main Results:Despite similar hemodynamic support (hydroxyethyl starch and norepinephrine doses), systemic and regional macrocirculatory and oxygen transport parameters, hyperoxia attenuated pulmonary hypertension, improved gut microcirculation (ileal mucosal laser Doppler flowmetry) and portal venous acidosis, prevented the deterioration in creatinine clearance (controls 61 (44;112), hyperoxia: 96 (88;110) mL·min−1, p = .074), and attenuated the increase in blood tumor necrosis factor-&agr; concentrations (p = .045 and p = .112 vs. controls at 18 hrs and 24 hrs, respectively). Lung and liver histology (hematoxyline eosine staining) were comparable in the two groups, but hyperoxia reduced apoptosis (Tunel test) in the liver (4 (3;8) vs. 2 (1;5) apoptotic cells/field, p = .069) and the lung (36 (31;46) vs. 15 (13;17) apoptotic cells/field, p < .001). Parameters of lung function, tissue antioxidant activity, blood oxidative and nitrosative stress (nitrate + nitrite, 8-isoprostane levels; deoxyribonucleic acid (DNA) damage measured using the comet assay) were not further affected during hyperoxia. Conclusions:When compared with the previous report on hyperoxia initiated simultaneously with induction of sepsis, i.e., using a pretreatment approach, pure oxygen ventilation started when porcine fecal peritonitis-induced septic shock was fully developed proved to be equally safe with respect to lung function and oxidative stress, but exerted only moderate beneficial effects.


Cochrane Database of Systematic Reviews | 2012

N‐acetylcysteine for sepsis and systemic inflammatory response in adults

Tamas Szakmany; Balázs Hauser; Peter Radermacher

BACKGROUNDnDeath is common in systemic inflammatory response syndrome (SIRS) or sepsis-induced multisystem organ failure and it has been thought that antioxidants such as N-acetylcysteine could be beneficial.nnnOBJECTIVESnWe assessed the clinical effectiveness of intravenous N-acetylcysteine for the treatment of patients with SIRS or sepsis.nnnSEARCH METHODSnWe searched the following databases: Cochrane Central Register of Clinical Trials (CENTRAL) (The Cochrane Library 2011, Issue 12); MEDLINE (January 1950 to January 2012); EMBASE (January 1980 to January 2012); CINAHL (1982 to January 2012); the NHS Trusts Clinical Trials Register and Current Controlled Trials (www.controlled-trials.com); LILACS; KoreaMED; MEDCARIB; INDMED; PANTELEIMON; Ingenta; ISI Web of Knowledge and the National Trials Register to identify all relevant randomized controlled trials available for review.nnnSELECTION CRITERIAnWe included only randomized controlled trials (RCTs) in the meta-analysis.nnnDATA COLLECTION AND ANALYSISnWe independently performed study selection, quality assessment and data extraction. We estimated risk ratios (RR) for dichotomous outcomes. We measured statistical heterogeneity using the I(2) statistic.nnnMAIN RESULTSnWe included 41 fully published studies (2768 patients). Mortality was similar in the N-acetylcysteine group and the placebo group (RR 1.06, 95% CI 0.79 to 1.42; I(2) = 0%). Neither did N-acetylcysteine show any significant effect on length of stay, duration of mechanical ventilation or incidence of new organ failure. Early application of N-acetylcysteine to prevent the development of an oxidato-inflammatory response did not affect the outcome, nor did late application that is after 24 hours of developing symptoms. Late application was associated with cardiovascular instability.nnnAUTHORS CONCLUSIONSnOverall, this meta-analysis puts doubt on the safety and utility of intravenous N-acetylcysteine as an adjuvant therapy in SIRS and sepsis. At best, N-acetylcysteine is ineffective in reducing mortality and complications in this patient population. At worst, it can be harmful, especially when administered later than 24 hours after the onset of symptoms, by causing cardiovascular depression. Unless future RCTs provide evidence of treatment effect, clinicians should not routinely use intravenous N-acetylcysteine in SIRS or sepsis and academics should not promote its use.


Critical Care Medicine | 2012

Effects of intravenous sulfide during resuscitated porcine hemorrhagic shock

Hendrik Bracht; Angelika Scheuerle; Michael Gröger; Balázs Hauser; José Matallo; Oscar McCook; Andrea Seifritz; Ulrich Wachter; Josef Vogt; Martin Matejovic; Peter Møller; Enrico Calzia; Csaba Szabó; Wolfgang Stahl; Kerstin Hoppe; Bettina Stahl; Lorenz Lampl; Michael K. Georgieff; Florian Wagner; Peter Radermacher; F Simon

Objective:Controversial data are available on the effects of hydrogen sulfide during hemorrhage. Because the clinical significance of hydrogen sulfide administration in rodents may not be applicable to larger species, we tested the hypothesis whether intravenous Na2S (sulfide) would beneficially influence organ dysfunction during long-term, porcine hemorrhage and resuscitation. Design:Prospective, controlled, randomized study. Setting:University animal research laboratory. Subjects:Forty-five domestic pigs of either gender. Interventions:Anesthetized and instrumented animals underwent 4 hrs of hemorrhage (removal of 40% of the blood volume and subsequent blood removal/retransfusion to maintain mean arterial pressure at 30 mm Hg). Sulfide infusion was started 2 hrs before hemorrhage, simultaneously with blood removal or at the beginning of retransfusion of shed blood, and continued for 12 hrs. Resuscitation comprised hydroxyethyl starch and norepinenephrine infusion titrated to maintain mean arterial pressure at preshock values. Measurements and Main Results:Before, immediately at the end of and 12 and 22 hrs after hemorrhage, we measured systemic and regional hemodynamics (portal vein, hepatic and right kidney artery ultrasound flow probes) and oxygen transport, nitric oxide and cytokine production (nitrate+nitrite, interleukin-6, tumor necrosis factor-&agr; levels). Postmortem biopsies were analyzed for histomorphology (hematoxylin and eosin staining) and DNA damage (terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling staining). The progressive kidney (creatinine levels, creatinine clearance), liver (transaminase activities, bilirubin levels), and cardiocirculatory (norepipnehrine requirements, troponin I levels) dysfunction was attenuated in the simultaneous treatment group only, which coincided with reduced lung, liver, and kidney histological damage. Sulfide reduced mortality, however, irrespective of the timing of its administration. Conclusions:While the sulfide-induced protection against organ injury was only present when initiated simultaneously with blood removal, it was largely unrelated to hypothermia. The absence of sulfide-mediated protection in the pretreatment protocol may be due to the accumulation of sulfide during low flow states. In conclusion, sulfide treatment can be effective in hemorrhagic shock, but its effectiveness is restricted to a narrow timing and dosing window.


Intensive Care Medicine | 2007

Effects of a cantaloupe melon extract/wheat gliadin biopolymer during aortic cross-clamping.

Jochen Kick; Balázs Hauser; Hendrik Bracht; Maura Albicini; Sukru Oter; Florian Simon; Ulrich Ehrmann; Catherine Garrel; Jörn Sträter; Uwe B. Brückner; Xavier Leverve; Hubert Schelzig; Günter Speit; Peter Radermacher; Claus-Martin Muth

ObjectiveWe previously reported in healthy volunteers that axa0cantaloupe melon extract chemically combined with wheat gliadin (melon extract/gliadin) and containing SOD, catalase and residual glutathione peroxidase (GPx), protected against DNA strand-break damage induced by hyperbaric oxygen (HBO), axa0well-established model of DNA damage resulting from oxidative stress. Aortic cross-clamping is axa0typical example of ischemia/reperfusion injury-related oxidative stress, and therefore we investigated whether this melon extract/gliadin would also reduce DNA damage after aortic cross-clamping and reperfusion.DesignProspective, randomized, controlled experimental study.SettingAnimal laboratory.Patients and participants18 anesthetized, mechanically ventilated and instrumented pigs.InterventionsAfter 14u202fdays of oral administration of 1250u202fmg of the melon extract/gliadin (nu202f=u202f9) or vehicle (nu202f=u202f9), animals underwent 30u202fmin of thoracic aortic cross-clamping and 4u202fh of reperfusion.Measurements and resultsBefore clamping, immediately before declamping, and at 2u202fand 4u202fh of reperfusion, we measured blood isoprostane (immunoassay) and malondialdehyde concentrations (fluorimetric thiobarbituric acid test), SOD, catalase and GPx activities (spectrophotometric kits), NO formation (nitrate+nitrite; chemoluminescence), DNA damage in whole blood samples and isolated lymphocytes exposed to hyperbaric oxygen (comet assay). Organ function was also evaluated. Kidney and spinal cord specimen were analysed for apoptosis (TUNEL assay). The melon extract/gliadin blunted the DNA damage, reduced spinal cord apoptosis and attenuated NO release, however, without any effect on lipid peroxidation and organ function.ConclusionsPre-treatment with the oral melon extract/gliadin may be axa0therapeutic option to reduce oxidative cell injury affiliated with aortic cross-clamping.

Collaboration


Dive into the Balázs Hauser's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hubert Schelzig

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Matejovic

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge