Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Balázs Pál is active.

Publication


Featured researches published by Balázs Pál.


Nature Neuroscience | 2011

Ca2+-activated Cl- currents are dispensable for olfaction

Gwendolyn Billig; Balázs Pál; Pawel Fidzinski; Thomas J. Jentsch

Canonical olfactory signal transduction involves the activation of cyclic AMP–activated cation channels that depolarize the cilia of receptor neurons and raise intracellular calcium. Calcium then activates Cl− currents that may be up to tenfold larger than cation currents and are believed to powerfully amplify the response. We identified Anoctamin2 (Ano2, also known as TMEM16B) as the ciliary Ca2+-activated Cl− channel of olfactory receptor neurons. Ano2 is expressed in the main olfactory epithelium (MOE) and in the vomeronasal organ (VNO), which also expresses the related Ano1 channel. Disruption of Ano2 in mice virtually abolished Ca2+-activated Cl− currents in the MOE and VNO. Ano2 disruption reduced fluid-phase electro-olfactogram responses by only ∼40%, did not change air-phase electro-olfactograms and did not reduce performance in olfactory behavioral tasks. In contrast with the current view, cyclic nucleotide–gated cation channels do not need a boost by Cl− channels to achieve near-physiological levels of olfaction.


Journal of Clinical Investigation | 2014

Cannabidiol exerts sebostatic and antiinflammatory effects on human sebocytes

Attila Oláh; Balázs István Tóth; István Borbíró; Koji Sugawara; Attila Gabor Szollosi; Gabriella Czifra; Balázs Pál; Lídia Ambrus; Jennifer E. Kloepper; Emanuela Camera; Matteo Ludovici; Mauro Picardo; Thomas Voets; Christos C. Zouboulis; Ralf Paus; Tamás Bíró

The endocannabinoid system (ECS) regulates multiple physiological processes, including cutaneous cell growth and differentiation. Here, we explored the effects of the major nonpsychotropic phytocannabinoid of Cannabis sativa, (-)-cannabidiol (CBD), on human sebaceous gland function and determined that CBD behaves as a highly effective sebostatic agent. Administration of CBD to cultured human sebocytes and human skin organ culture inhibited the lipogenic actions of various compounds, including arachidonic acid and a combination of linoleic acid and testosterone, and suppressed sebocyte proliferation via the activation of transient receptor potential vanilloid-4 (TRPV4) ion channels. Activation of TRPV4 interfered with the prolipogenic ERK1/2 MAPK pathway and resulted in the downregulation of nuclear receptor interacting protein-1 (NRIP1), which influences glucose and lipid metabolism, thereby inhibiting sebocyte lipogenesis. CBD also exerted complex antiinflammatory actions that were coupled to A2a adenosine receptor-dependent upregulation of tribbles homolog 3 (TRIB3) and inhibition of the NF-κB signaling. Collectively, our findings suggest that, due to the combined lipostatic, antiproliferative, and antiinflammatory effects, CBD has potential as a promising therapeutic agent for the treatment of acne vulgaris.


Brain Research Bulletin | 2005

Norfluoxetine and fluoxetine have similar anticonvulsant and Ca2+ channel blocking potencies.

Valéria Kecskeméti; Zoltán Rusznák; Pál Riba; Balázs Pál; Róbert Wagner; Csaba Harasztosi; Péter P. Nánási; G. Szücs

Norfluoxetine is the most important active metabolite of the widely used antidepressant fluoxetine but little is known about its pharmacological actions. In this study the anticonvulsant actions of norfluoxetine and fluoxetine were studied and compared to those of phenytoin and clonazepam in pentylenetetrazol-induced mouse epilepsy models. Pretreatment with fluoxetine or norfluoxetine (20mg/kg s.c.), as well as phenytoin (30 mg/kg s.c.) and clonazepam (0.1mg/kg s.c.) significantly increased both the rate and duration of survival, demonstrating a significant protective effect against pentylenetetrazol-induced epilepsy. These effects of norfluoxetine were similar to those of fluoxetine. According to the calculated combined protection scores, both norfluoxetine and fluoxetine were effective from the concentration of 10mg/kg, while the highest protective action was observed with clonazepam. Effects of norfluoxetine and fluoxetine on voltage-gated Ca2+ channels were evaluated by measuring peak Ba2+ current flowing through the Ca2+ channels upon depolarization using whole cell voltage clamp in enzymatically isolated rat cochlear neurons. The current was reduced equally in a concentration-dependent manner by norfluoxetine (EC50=20.4+/-2.7 microM, Hill coefficient=0.86+/-0.1) and fluoxetine (EC50=22.3+/-3.6 microM, Hill coefficient=0.87+/-0.1). It was concluded that the efficacy of the two compounds in neuronal tissues was equal, either in preventing seizure activity or in blocking the neuronal Ca2+ channels.


Cellular and Molecular Life Sciences | 2004

Differential distribution of TASK-1, TASK-2 and TASK-3 immunoreactivities in the rat and human cerebellum

Zoltán Rusznák; Krisztina Pocsai; Ilona Kovács; Ágnes Pór; Balázs Pál; Tamás Bíró; G. Szücs

In this work, the distributions of some acid-sensitive two-pore-domain K+ channels (TASK-1, TASK-2 and TASK-3) were investigated in the rat and human cerebellum. Astrocytes situated in rat cerebellar tissue sections were positive for TASK-2 channels. Purkinje cells were strongly stained and granule cells and astrocytes were moderately positive for TASK-3. Astrocytes isolated from the hippocampus, cerebellum and cochlear nucleus expressed TASK channels in a primary tissue culture. Our results suggest that TASK channel expression may be significant in the endoplasmic reticulum of the astrocytes. The human cerebellum showed weak TASK-2 immunolabelling. The pia mater, astrocytes, Purkinje and granule cells demonstrated strong TASK-1 and TASK-3 positivities. The TASK-3 labelling was stronger in general, but it was particularly intense in the Purkinje cells and pia mater.


Peptides | 2006

The antifungal protein AFP secreted by Aspergillus giganteus does not cause detrimental effects on certain mammalian cells.

Henrietta Szappanos; Gyula P. Szigeti; Balázs Pál; Zoltán Rusznák; Géza Szűcs; Éva Rajnavölgyi; József Balla; György Balla; Emőke Nagy; Éva Leiter; István Pócsi; Silke Hagen; Vera Meyer; László Csernoch

The antifungal protein AFP is a small, cystein-rich protein secreted by the imperfect ascomycete Aspergillus giganteus. The protein efficiently inhibits the growth of filamentous fungi, including a variety of serious human and plant pathogens mainly of the genera Aspergillus and Fusarium, whereas AFP does not affect the growth of yeast and bacteria. This restricted susceptibility range makes it very attractive for medical or biotechnological use to combat fungal infection and contamination. We, therefore, analyzed whether AFP affects the growth or function of a number of mammalian cells. Here we show that the protein neither provokes any cytotoxic effects on human endothelial cells isolated from the umbilical vein nor activates the immune system. Moreover, potassium currents of neurons and astrocytes do not change in the presence of AFP and neither excitatory processes nor the intracellular calcium homeostasis of cultured skeletal muscle myotubes are affected by AFP. Our data, therefore, suggest that AFP is indeed a promising candidate for the therapeutic or biotechnological use as a potential antifungal agent.


Cellular and Molecular Life Sciences | 2003

HCN channels contribute to the intrinsic activity of cochlear pyramidal cells

Balázs Pál; Ágnes Pór; G. Szücs; Ilona Kovács; Zoltán Rusznák

A hyperpolarization-activated current recorded from the pyramidal cells of the dorsal cochlear nucleus was investigated in the present study by using 150- to 200-μm-thick brain slices prepared from 6- to 14-day-old Wistar rats. The pyramidal neurones exhibited a slowly activating inward current on hyperpolarization. The reversal potential of this component was –32 ± 3 mV (mean ± SE, n = 6), while its half-activation voltage was –99 ± 1 mV with a slope factor of 10.9 ± 0.4 mV (n = 27). This current was highly sensitive to the extracellular application of both 1 mM Cs+ and 10 μM ZD7288. The electrophysiological properties and the pharmacological sensitivity of this current indicated that it corresponded to a hyperpolarization-activated non-specific cationic current (Ih). Our experiments showed that there was a correlation between the availability of the h-current and the spontaneous activity of the pyramidal cells, suggesting that this conductance acts as a pacemaker current in these neurones. Immunocytochemical experiments were also conducted on freshly isolated pyramidal cells to demonstrate the possible subunit composition of the channels responsible for the genesis of the pyramidal h-current. These investigations indicated the presence of HCN1, HCN2 and HCN4 subunits in the pyramidal cells.


Hearing Research | 2005

Voltage-gated and background K+ channel subunits expressed by the bushy cells of the rat cochlear nucleus.

Balázs Pál; Ágnes Pór; Krisztina Pocsai; G. Szücs; Zoltán Rusznák

Bushy cells of the ventral cochlear nucleus produce a single, short latency action potential at the beginning of long depolarisations. In the present work an immunochemical survey was performed to detect the presence of K+ channel subunits which may contribute to the specific membrane properties of the bushy cells. The immunocytochemical experiments conducted on enzymatically isolated bushy cells indicated positive immunolabelling for several subunits known to be responsible for the genesis of rapidly inactivating K+ currents. Bushy cells showed strong expression of Kv3.4, 4.2 and 4.3 subunits, with the lack of Kv1.4 specific immunoreaction. The Kv3.4-specific immunoreaction had a specific, patchy appearance. Bushy cells also expressed various members of the Kv1 subunit family, most notably Kv1.1, 1.2, 1.3 and 1.6. Weak positivity could be observed for Kv3.2 subunits. The positive immunolabelling for Kv3.4, Kv4.2 and Kv4.3 was confirmed in free-floating tissue slices. Voltage-clamp experiments performed on positively identified bushy cells in brain slices corroborated the presence and activity of Kv3.4 and Kv4.2/4.3 containing K+ channels. Bushy cell showed strong immunopositivity for TASK-1 channels too. The results presented in this work indicate that bushy cells possess several types of voltage-gated K+ channel subunits whose activity may contribute to the membrane properties and firing characteristics of these neurones.


Journal of Histochemistry and Cytochemistry | 2008

Voltage-gated Potassium Channel (Kv) Subunits Expressed in the Rat Cochlear Nucleus

Zoltán Rusznák; Gábor Bakondi; Krisztina Pocsai; Ágnes Pór; Lívia Kosztka; Balázs Pál; Dénes Nagy; G. Szücs

Because the neuronal membrane properties and firing characteristics are crucially affected by the depolarization-activated K+ channel (Kv) subunits, data about the Kv distribution may provide useful information regarding the functionality of the neurons situated in the cochlear nucleus (CN). Using immunohistochemistry in free-floating slices, the distribution of seven Kv subunits was described in the rat CN. Positive labeling was observed for Kv1.1, 1.2, 1.6, 3.1, 3.4, 4.2, and 4.3 subunits. Giant and octopus neurons showed particularly strong immunopositivity for Kv3.1; octopus neurons showed intense Kv1.1- and 1.2-specific reactions also. In the latter case, an age-dependent change of the expression pattern was also documented; although both young and older animals produced definite labeling for Kv1.2, the intensity of the reaction increased in older animals and was accompanied with the translocation of the Kv1.2 subunits to the cell surface membrane. The granule cell layer exhibited strong Kv4.2-specific immunopositivity, and markedly Kv4.2-positive glomerular synapses were also seen. It was found that neither giant nor pyramidal cells were uniform in terms of their Kv expression patterns. Our data provide new information about the Kv expression of the CN and also suggest potential functional heterogeneity of the giant and pyramidal cells.


Frontiers in Neural Circuits | 2015

Decoding brain state transitions in the pedunculopontine nucleus: cooperative phasic and tonic mechanisms.

Anne Petzold; Miguel Valencia; Balázs Pál; Juan Mena-Segovia

Cholinergic neurons of the pedunculopontine nucleus (PPN) are most active during the waking state. Their activation is deemed to cause a switch in the global brain activity from sleep to wakefulness, while their sustained discharge may contribute to upholding the waking state and enhancing arousal. Similarly, non-cholinergic PPN neurons are responsive to brain state transitions and their activation may influence some of the same targets of cholinergic neurons, suggesting that they operate in coordination. Yet, it is not clear how the discharge of distinct classes of PPN neurons organize during brain states. Here, we monitored the in vivo network activity of PPN neurons in the anesthetized rat across two distinct levels of cortical dynamics and their transitions. We identified a highly structured configuration in PPN network activity during slow-wave activity that was replaced by decorrelated activity during the activated state (AS). During the transition, neurons were predominantly excited (phasically or tonically), but some were inhibited. Identified cholinergic neurons displayed phasic and short latency responses to sensory stimulation, whereas the majority of non-cholinergic showed tonic responses and remained at high discharge rates beyond the state transition. In vitro recordings demonstrate that cholinergic neurons exhibit fast adaptation that prevents them from discharging at high rates over prolonged time periods. Our data shows that PPN neurons have distinct but complementary roles during brain state transitions, where cholinergic neurons provide a fast and transient response to sensory events that drive state transitions, whereas non-cholinergic neurons maintain an elevated firing rate during global activation.


Brain Research Bulletin | 2007

Rhodamine backfilling and confocal microscopy as a tool for the unambiguous identification of neuronal cell types: A study of the neurones of the rat cochlear nucleus

Krisztina Pocsai; Balázs Pál; Pál Pap; Gábor Bakondi; Lívia Kosztka; Zoltán Rusznák; Géza Szűcs

Adequate interpretation of the functional data characterising the projection neurones of the cochlear nucleus (CN) is impossible without the unequivocal classification of these cell types at the end of the experiments. In this study, morphological criteria applicable for unambiguous identification of CN neurones have been sought. The neurones were labelled with rhodamine from incisions severing the projection pathways of the individual cell types, allowing their selective labelling and morphological characterisation. Confocal microscopy was employed for the investigation of the rhodamine-filled cells whose morphology was assessed after reconstructing the three-dimensional images of the cell bodies and proximal processes. The diameters of the somata and the number of processes originating from the cell bodies were also determined. In most of the cases, unambiguous identification of the bushy, octopus and Purkinje-like cells was relatively straightforward. On the other hand, precise classification of the pyramidal cells was often difficult, especially because giant cells could easily possess morphological features resembling pyramidal neurones. Occasionally, giant cells also mimicked the appearance of octopus neurones, which may be another important source of identification error, especially as these two cell types are often situated close to each other in the CN. It is concluded that morphological criteria defined in the present work may be effectively applied for the unambiguous identification of the projection neurones of the CN, even following functional measurements, when the correct cell classification is essential for the interpretation of the experimental data. Moreover, the present study also confirmed that Purkinje-like cells project to the cerebellum.

Collaboration


Dive into the Balázs Pál's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Szücs

University of Debrecen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ágnes Pór

University of Debrecen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pál Pap

University of Debrecen

View shared research outputs
Researchain Logo
Decentralizing Knowledge