Balazs Sarman
Semmelweis University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Balazs Sarman.
Biochemical and Biophysical Research Communications | 2003
Gabor Foldes; Ferenc Horkay; István Szokodi; Olli Vuolteenaho; Mika Ilves; Ken A. Lindstedt; Mikko I. Mäyränpää; Balazs Sarman; Leila Seres; Réka Skoumal; Zoltan Lako-Futo; Rudolf deChâtel; Heikki Ruskoaho; Miklós Tóth
The orphan receptor APJ and its recently identified endogenous ligand, apelin, are expressed in the heart. However, their importance in the human cardiovascular system is not known. This study shows that apelin-like immunoreactivity is abundantly present in healthy human heart and plasma. Gel filtration HPLC analysis revealed that atrial and plasma levels of high molecular weight apelin, possibly proapelin, were markedly higher than those of mature apelin-36 itself. As assessed by quantitative RT-PCR analysis, left ventricular apelin mRNA levels were increased 4.7-fold in chronic heart failure (CHF) due to coronary heart disease (p<0.01) and 3.3-fold due to idiopathic dilated cardiomyopathy (p<0.05), whereas atrial apelin mRNA levels were unchanged. Atrial and plasma apelin-like immunoreactivity as well as atrial and ventricular APJ receptor mRNA levels were significantly decreased in CHF. Our results suggest that a new cardiac regulatory peptide, apelin, and APJ receptor may contribute to the pathophysiology of human CHF.
Circulation | 2003
Zoltan Lako-Futo; István Szokodi; Balazs Sarman; Gabor Foldes; Heikki Tokola; Mika Ilves; Hanna Leskinen; Olli Vuolteenaho; Réka Skoumal; Rudolf deChâtel; Heikki Ruskoaho; Miklós Tóth
Background—The precise function of angiotensin II type 2 receptor (AT2-R) in the mammalian heart in vivo is unknown. Here, we investigated the role of AT2-R in cardiac pressure overload. Methods and Results—Rats were infused with vehicle, angiotensin II (Ang II), PD123319 (an AT2-R antagonist), or the combination of Ang II and PD123319 via subcutaneously implanted osmotic minipumps for 12 or 72 hours. Ang II–induced increases in mean arterial pressure, left ventricular weight/body weight ratio, and elevation of skeletal &agr;-actin and &bgr;-myosin heavy chain mRNA levels were not altered by PD123319. In contrast, AT2-R blockade resulted in a marked increase in the gene expression of c-fos, endothelin-1, and insulin-like growth factor-1 in Ang II–induced hypertension. In parallel, Ang II–stimulated mRNA and protein expression of atrial natriuretic peptide were significantly augmented by AT2-R blockade. Moreover, PD123319 markedly increased the synthesis of B-type natriuretic peptide. Furthermore, the expression of vascular endothelial growth factor and fibroblast growth factor-1 was downregulated by Ang II only in the presence of AT2-R blockade. Conclusions—Our results provide evidence that AT2-R plays a functional role in the cardiac hypertrophic process in vivo by selectively regulating the expression of growth-promoting and growth-inhibiting factors.
Circulation | 2008
István Szokodi; Risto Kerkelä; Anna Maria Kubin; Balazs Sarman; Sampsa Pikkarainen; Attila Kónyi; Iván G. Horváth; Lajos Papp; Miklós Tóth; Réka Skoumal; Heikki Ruskoaho
Background— Extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (p38-MAPK) have been shown to regulate various cellular processes, including cell growth, proliferation, and apoptosis in the heart. However, the function of these signaling pathways in the control of cardiac contractility is unclear. Here, we characterized the contribution of ERK1/2 and p38-MAPK to the inotropic effect of endothelin-1 (ET-1). Methods and Results— In isolated perfused rat hearts, infusion of ET-1 (1 nmol/L) for 10 minutes increased contractility and phosphorylation of ERK1/2 and their downstream target p90 ribosomal S6 kinase (p90RSK). Suppression of ERK1/2 activation prevented p90RSK phosphorylation and attenuated the inotropic effect of ET-1. Pharmacological inhibition of epidermal growth factor receptor kinase activity abolished ET-1–induced epidermal growth factor receptor transactivation and ERK1/2 and p90RSK phosphorylation and reduced ET-1–mediated inotropic response. Moreover, inhibition of the p90RSK target Na+-H+ exchanger 1 attenuated the inotropic effect of ET-1. In contrast to ERK1/2 signaling, suppression of p38-MAPK activity further augmented ET-1–enhanced contractility, which was accompanied by increased phosphorylation of phospholamban at Ser-16. Conclusions— MAPKs play opposing roles in the regulation of cardiac contractility in that the ERK1/2-mediated positive inotropic response to ET-1 is counterbalanced by simultaneous activation of p38-MAPK. Hence, selective activation of ERK1/2 signaling and inhibition of p38-MAPK signaling may represent novel means to support cardiac function in disease.
Molecular and Cellular Endocrinology | 2007
Theresa Majalahti; Maria Suo-Palosaari; Balazs Sarman; Nina Hautala; Sampsa Pikkarainen; Heikki Tokola; Olli Vuolteenaho; Jun Wang; Pierre Paradis; Mona Nemer; Heikki Ruskoaho
The transcription factors involved in the activation of cardiac gene expression by angiotensin II (Ang II) in vivo are not well understood. Here we studied the contribution of transcriptional elements to the activation of the cardiac B-type natriuretic peptide (BNP) gene promoter by Ang II in conscious rats and in angiotensin II type 1 receptor (AT1R) transgenic mice. Rat BNP luciferase reporter gene constructs were injected into the left ventricular wall. The mean luciferase activity was 1.8-fold higher (P<0.05) in the ventricles of animals subjected to 2-week Ang II infusion as compared with vehicle infusion. Our results indicate that GATA binding sites at -90 and -81 in the rat BNP promoter are essential for the in vivo response to Ang II. The GATA factor binding to these sites is GATA-4. BNP mRNA levels and GATA-4 binding activity are also increased in the hypertrophied hearts of aged AT1R transgenic mice.
Journal of Lipid Research | 2006
Gabor Foldes; Szilvia Vajda; Zoltan Lako-Futo; Balazs Sarman; Réka Skoumal; Mika Ilves; Rudolf deChâtel; István Karádi; Miklós Tóth; Heikki Ruskoaho; István Leprán
Long-term dietary fatty acid intake alters the development of left ventricular hypertrophy, but the linking signaling pathways are unclear. We studied the role and underlying signaling mechanisms of dietary fat intake in the early phase of the hypertrophic process. Rats assigned for 4 weeks of high-oil, high-fat, or standard diet were subjected to angiotensin II (Ang II; 33 μg/kg/h, subcutaneous) or vehicle infusion for 24 h. The Ang II-induced increase in left ventricular mRNA levels of hypertrophy-associated genes was higher in rats fed the high-oil diet compared with the standard diet. Western blotting revealed that, in parallel with changes in gene expression, the high-oil diet increased c-Jun N-terminal kinase phosphorylation (P < 0.001). Ang II increased p38 mitogen-activated protein kinase (MAPK) phosphorylation in rats fed the high-fat diet (3-fold; P < 0.01). The increase in transcription factor activator protein-1 (AP-1) DNA binding activity in response to Ang II was higher in rats fed the high-oil diet compared with those fed the standard diet (P < 0.001). Ang II downregulated inducible nitric oxide synthase mRNA levels in fatty acid-supplemented groups compared with the standard diet group. These results show that dietary fat type modulates the early activation of hypertrophic genes in pressure-overloaded myocardium involving the distinct activation of AP-1 and MAPK signal transduction pathways.
Journal of Hypertension | 2004
Eva Ruzicska; Gabor Foldes; Zoltan Lako-Futo; Balazs Sarman; Janos Wellmann; Gábor Szénási; Zsolt Tulassay; Heikki Ruskoaho; Miklós Tóth; Anikó Somogyi
Objective To gain insight into the cardiac adaptive mechanisms in diabetes, we studied whether angiotensin II (Ang II) alters expression of the atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP) and adrenomedullin (AM) genes in the left ventricle of the diabetic rat heart. Methods Diabetes was induced by streptozotocin (STZ; 60 mg/kg body weight intravenously). During the last 24 h of 2.5 or 7 weeks of treatment of male Wistar rats with STZ or vehicle, Ang II (33 μg/kg per h) was administered via osmotic minipumps. Results Diabetes was associated with an increased left ventricular weight to body weight (LV/BW) ratio, an index of left ventricular hypertrophy, at week 7 but not at week 2.5, and with increased ANP mRNA content at 2.5 weeks, but not with altered expression of the AM and BNP genes. Mean arterial pressure and LV/BW ratio were increased by Ang II in all groups except in the 7-week diabetic group. Levels of ANP mRNA were increased fourfold (P < 0.001) and threefold (P < 0.05) by Ang II at 2.5 and 7 weeks in control animals, respectively, and 11-fold (P < 0.001) and sevenfold (P < 0.001) at 2.5 and 7 weeks in diabetic animals, respectively. Ang II increased ventricular concentrations of BNP mRNA in control and diabetic animals at 2.5 weeks (1.3-fold, P < 0.001; and 1.6-fold, P < 0.001) and at 7 weeks (1.3-fold, P < 0.05; and 1.8-fold, P < 0.001), respectively. Left ventricular levels of adrenomedullin mRNA were increased by treatment with Ang II for 24 h in 2.5-week diabetic animals. Conclusion. Ang II markedly increased the levels of natriuretic peptide mRNAs in the left ventricle of normal and diabetic rat hearts, whereas it increased adrenomedullin mRNA levels only in 2.5-week diabetic rats and failed to cause hypertension in 7-week diabetic rats. Left ventricular levels of ANP and BNP mRNA were increased by Ang II in diabetic animals more than the additive effects of diabetes and Ang II alone, showing that Ang II induced an amplified response with respect to cardiac concentrations of ANP and BNP in diabetes.
Journal of Biological Chemistry | 2004
Olli Tenhunen; Balazs Sarman; Risto Kerkelä; István Szokodi; Lajos Papp; Miklós Tóth; Heikki Ruskoaho
Life Sciences | 2007
Réka Skoumal; István Szokodi; Jani Aro; Gabor Foldes; Monika Göőz; Leila Seres; Balazs Sarman; Zoltan Lako-Futo; Lajos Papp; Olli Vuolteenaho; Juhani Leppäluoto; Rudolf deChâtel; Heikki Ruskoaho; Miklós Tóth
American Journal of Hypertension | 2004
Gabor Foldes; Szilvia Vajda; Zoltan Lako-Futo; Balazs Sarman; Réka Skoumal; Mika Ilves; Rudolf de Chatel; Istvan Lepran; Heikki Ruskoaho; Miklós Tóth
American Journal of Hypertension | 2003
Balazs Sarman; Gabor Foldes; Miklós Tóth; Heikki Ruskoaho; Rudolf deChatel