Baldur Sveinbjørnsson
University of Tromsø
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Baldur Sveinbjørnsson.
Critical Care Medicine | 2001
Mikhail Y. Kirov; Oleg V. Evgenov; Natalia V. Evgenov; Elena M. Egorina; Mikhail A. Sovershaev; Baldur Sveinbjørnsson; Eduard V. Nedashkovsky; Lars J. Bjertnaes
ObjectiveTo evaluate the effects of continuous infusion of methylene blue (MB), an inhibitor of the nitric oxide pathway, on hemodynamics and organ functions in human septic shock. DesignProspective, randomized, controlled, open-label, pilot study. SettingMultidisciplinary intensive care unit of a university hospital. PatientsTwenty patients with septic shock diagnosed <24 hrs before randomization. InterventionsPatients were randomized 1:1 to receive either MB (MB group, n = 10) or isotonic saline (control group, n = 10), adjunctive to conventional treatment. MB was administered as an intravenous bolus injection (2 mg/kg), followed 2 hrs later by infusion at stepwise increasing rates of 0.25, 0.5, 1, and 2 mg/kg/hr that were maintained for 1 hr each. During infusion, mean arterial pressure was maintained between 70 and 90 mm Hg, while attempting to reduce concurrent adrenergic support. Measurements and Main Results Hemodynamics and organ function variables were assessed over a 24-hr period, and the survival rate at day 28 was noted. Infusion of MB prevented the stroke volume and the left-ventricular stroke work indexes from falling and increased mean arterial pressure. Compared with the control group, MB reduced the requirement for norepinephrine, epinephrine, and dopamine by as much as 87%, 81%, and 40%, respectively. Oxygen delivery remained unchanged in the MB group and decreased in the control group. MB also reduced the body temperature and the plasma concentration of nitrates/nitrites. Leukocytes and organ function variables such as bilirubin, alanine aminotransferase, urea, and creatinine were not significantly affected. Platelet count decreased in both groups. Five patients treated with MB survived vs. three patients receiving conventional treatment. ConclusionsIn human septic shock, continuously infused MB counteracts myocardial depression, maintains oxygen transport, and reduces concurrent adrenergic support. Infusion of MB appears to have no significant adverse effects on the selected organ function variables.
International Journal of Cancer | 2006
Liv Tone Eliassen; Gerd Berge; Arild Leknessund; Mari Wikman; Inger Lindin; Cecilie Løkke; Frida Ponthan; John Inge Johnsen; Baldur Sveinbjørnsson; Per Kogner; Trond Flægstad; Øystein Rekdal
Antimicrobial peptides have been shown to exert cytotoxic activity towards cancer cells through their ability to interact with negatively charged cell membranes. In this study the cytotoxic effect of the antimicrobial peptide, LfcinB was tested in a panel of human neuroblastoma cell lines. LfcinB displayed a selective cytotoxic activity against both MYCN‐amplified and non‐MYCN‐amplified cell lines. Non‐transformed fibroblasts were not substantially affected by LfcinB. Treatment of neuroblastoma cells with LfcinB induced rapid destabilization of the cytoplasmic membrane and formation of membrane blebs. Depolarization of the mitochondria membranes and irreversible changes in the mitochondria morphology was also evident. Immuno‐ and fluorescence‐labeled LfcinB revealed that the peptide co‐localized with mitochondria. Furthermore, treatment of neuroblastoma cells with LfcinB induced cleavage of caspase‐6, ‐7 and ‐9 followed by cell death. However, neither addition of the pan‐caspase inhibitor, zVAD‐fmk, or specific caspase inhibitors could reverse the cytotoxic effect induced by LfcinB. Treatment of established SH‐SY‐5Y neuroblastoma xenografts with repeated injections of LfcinB resulted in significant tumor growth inhibition. These results revealed a selective destabilizing effect of LfcinB on two important targets in the neuroblastoma cells, the cytoplasmic‐ and the mitochondria membrane.
Journal of Clinical Investigation | 2011
Ninib Baryawno; Afsar Rahbar; Nina Wolmer-Solberg; Chato Taher; Jenny Odeberg; Anna Darabi; Zahidul Khan; Baldur Sveinbjørnsson; Ole Martin Fuskevåg; Lova Segerström; Magnus Nordenskjöld; Peter Siesjö; Per Kogner; John Inge Johnsen; Cecilia Söderberg-Nauclér
Medulloblastomas are the most common malignant brain tumors in children. They express high levels of COX-2 and produce PGE2, which stimulates tumor cell proliferation. Human cytomegalovirus (HCMV) is prevalent in the human population and encodes proteins that provide immune evasion strategies and promote oncogenic transformation and oncomodulation. In particular, HCMV induces COX-2 expression; STAT3 phosphorylation; production of PGE2, vascular endothelial growth factor, and IL-6; and tumor formation in vivo. Here, we show that a large proportion of primary medulloblastomas and medulloblastoma cell lines are infected with HCMV and that COX-2 expression, along with PGE2 levels, in tumors is directly modulated by the virus. Our analysis indicated that both HCMV immediate-early proteins and late proteins are expressed in the majority of primary medulloblastomas. Remarkably, all of the human medulloblastoma cell lines that we analyzed contained HCMV DNA and RNA and expressed HCMV proteins at various levels in vitro. When engrafted into immunocompromised mice, human medulloblastoma cells induced expression of HCMV proteins. HCMV and COX-2 expression correlated in primary tumors, cell lines, and medulloblastoma xenografts. The antiviral drug valganciclovir and the specific COX-2 inhibitor celecoxib prevented HCMV replication in vitro and inhibited PGE2 production and reduced medulloblastoma tumor cell growth both in vitro and in vivo. Ganciclovir did not affect the growth of HCMV-negative tumor cell lines. These findings imply an important role for HCMV in medulloblastoma and suggest HCMV as a novel therapeutic target for this tumor.
Oncogene | 2008
John Inge Johnsen; Lova Segerström; Abiel Orrego; Lotta Elfman; Marie Henriksson; Bertil Kågedal; Staffan Eksborg; Baldur Sveinbjørnsson; Per Kogner
Mammalian target of rapamycin (mTOR) has been shown to play an important function in cell proliferation, metabolism and tumorigenesis, and proteins that regulate signaling through mTOR are frequently altered in human cancers. In this study we investigated the phosphorylation status of key proteins in the PI3K/AKT/mTOR pathway and the effects of the mTOR inhibitors rapamycin and CCI-779 on neuroblastoma tumorigenesis. Significant expression of activated AKT and mTOR were detected in all primary neuroblastoma tissue samples investigated, but not in non-malignant adrenal medullas. mTOR inhibitors showed antiproliferative effects on neuroblastoma cells in vitro. Neuroblastoma cell lines expressing high levels of MYCN were significantly more sensitive to mTOR inhibitors compared to cell lines expressing low MYCN levels. Established neuroblastoma tumors treated with mTOR inhibitors in vivo showed increased apoptosis, decreased proliferation and inhibition of angiogenesis. Importantly, mTOR inhibitors induced downregulation of vascular endothelial growth factor A (VEGF-A) secretion, cyclin D1 and MYCN protein expression in vitro and in vivo. Our data suggest that mTOR inhibitors have therapeutic efficacy on aggressive MYCN amplified neuroblastomas.
Cancer Research | 2010
Ninib Baryawno; Baldur Sveinbjørnsson; Staffan Eksborg; Ching-Shih Chen; Per Kogner; John Inge Johnsen
Activation of the beta-catenin and receptor kinase pathways occurs often in medulloblastoma, the most common pediatric malignant brain tumor. In this study, we show that molecular cross-talk between the beta-catenin and phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways is crucial to sustain medulloblastoma pathophysiology. Constitutive activation of phosphoinositide-dependent protein kinase 1 (PDK1), Akt, and phosphorylation of [corrected] glycogen synthase kinase 3beta (GSK-3beta) was detected by immunohistochemistry in all primary medulloblastomas examined (n = 41). Small-molecule inhibitors targeting the PI3K/Akt signaling pathway affected beta-catenin signaling by activation [corrected] of GSK-3beta, [corrected] resulting in cytoplasmic retention of beta-catenin and reduced expression of its target genes cyclin D1 and c-Myc. The PDK1 inhibitor OSU03012 induced mitochondrial-dependent apoptosis of medulloblastoma cells and enhanced the cytotoxic effects of chemotherapeutic drugs in a synergistic or additive manner. In vivo, OSU03012 inhibited the growth of established medulloblastoma xenograft tumors in a dose-dependent manner and augmented the antitumor effects of mammalian target of rapamycin inhibitor CCI-779. These findings demonstrate the importance of cross-talk between the PI3K/Akt and beta-catenin pathways in medulloblastoma and rationalize the PI3K/Akt signaling pathway as a therapeutic target in treatment of this disease.
Cancer Research | 2004
John Inge Johnsen; Magnus Lindskog; Frida Ponthan; Ingvild Pettersen; Lotta Elfman; Abiel Orrego; Baldur Sveinbjørnsson; Per Kogner
Neuroblastoma is the single most common and deadly tumor of childhood and is often associated with therapy resistance. Cyclooxygenases (COXs) catalyze the conversion of arachidonic acid to prostaglandins. COX-2 is up-regulated in several adult epithelial cancers and is linked to proliferation and resistance to apoptosis. We detected COX-2 expression in neuroblastoma primary tumors and cell lines but not in normal adrenal medullas from children. Treatment of neuroblastoma cells with nonsteroidal anti-inflammatory drugs, inhibitors of COX, induced caspase-dependent apoptosis via the intrinsic mitochondrial pathway. Treatment of established neuroblastoma xenografts in nude rats with the dual COX-1/COX-2 inhibitor diclofenac or the COX-2–specific inhibitor celecoxib significantly inhibited tumor growth in vivo (P < 0.001). In vitro, arachidonic acid and diclofenac synergistically induced neuroblastoma cell death. This effect was further pronounced when lipooxygenases were simultaneously inhibited. Proton magnetic resonance spectroscopy (1H MRS) of neuroblastoma cells treated with COX inhibitors demonstrated accumulation of polyunsaturated fatty acids and depletion of choline compounds. Thus, 1H MRS, which can be performed with clinical magnetic resonance scanners, is likely to provide pharmacodynamic markers of neuroblastoma response to COX inhibition. Taken together, these data suggest the use of nonsteroidal anti-inflammatory drugs as a novel adjuvant therapy for children with neuroblastoma.
Arthritis Research & Therapy | 2010
Vivian Berg; Baldur Sveinbjørnsson; Signy Bendiksen; Jan Brox; Khaled Meknas; Yngve Figenschau
IntroductionChemerin is a chemotactic peptide which directs leukocytes expressing the chemokine-like receptor ChemR23 towards sites of inflammation. ChemR23 is a G protein-coupled receptor which binds several different ligands, and it is also expressed by other cell types such as adipocytes. In addition to chemotaxis, recent reports suggest that ChemR23 is capable of mediating either inflammatory or anti-inflammatory effects, depending on the type of ligand it binds. In the present study, we aimed to clarify whether human chondrocytes express ChemR23 and chemerin, and whether chemerin/ChemR23 signalling could affect secretion of inflammatory mediators.MethodsTissue sections were taken from human knee joints and labelled with antibodies towards chemerin and ChemR23. Chondrocytes from cartilage tissue were isolated, cultured and assessed for chemerin and ChemR23 expression by PCR and immunolabelling. Receptor activation and intracellular signalling were studied by assessment of phosphorylated mitogen activated protein kinases (MAPKs) and phosphorylated Akt after stimulating cells with recombinant chemerin21-157. Biological effects of chemerin21-157 were investigated by measuring secretion of pro-inflammatory cytokines and metalloproteases in cell supernatants.ResultsBoth serially cultured human articular chondrocytes and resident cells in native cartilage expressed chemerin and ChemR23. Stimulating cells with chemerin21-157 resulted in phosphorylation of p44/p42 MAPKs (ERK 1/2) and Akt (Ser 473). Also, significantly enhanced levels of the pro-inflammatory cytokines interleukin-6 (IL-6), interleukin-8 (IL-8), tumour necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), and the matrix metalloproteases MMP-1, MMP-2, MMP-3, MMP-8 and MMP-13 were detected.ConclusionsThese results demonstrate that human chondrocytes express both the receptor ChemR23 and the ligand chemerin. Chemerin21-157 stimulation engaged signal-transduction pathways that further promoted inflammatory signalling in chondrocytes, as judged by an enhanced secretion of cytokines and metalloproteases. Taken together, the previously reported chemotaxis and the present findings suggest that the receptor and its ligand may play pivotal roles in joint inflammation.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Hiromi Hanaka; Sven-Christian Pawelzik; John Inge Johnsen; Marija Rakonjac; Kan Terawaki; Agnes Rasmuson; Baldur Sveinbjørnsson; Martin C. Schumacher; Mats Hamberg; Bengt Samuelsson; Per-Johan Jakobsson; Per Kogner; Olof Rådmark
There is strong evidence for a role of prostaglandin E2 (PGE2) in cancer cell proliferation and tumor development. In PGE2 biosynthesis, cyclooxygenases (COX-1/COX-2) convert arachidonic acid to PGH2, which can be isomerized to PGE2 by microsomal PGE-synthase-1 (MPGES-1). The human prostate cancer cell line DU145 expressed high amounts of MPGES-1 in a constitutive manner. MPGES-1 expression also was detectable in human prostate cancer tissues, where it appeared more abundant compared with benign hyperplasia. By using shRNA, we established stable and practically complete knockdown of MPGES-1, both in DU145 cells with high constitutive expression and in the non-small cell lung cancer cell line A549, where MPGES-1 is inducible. For microsomes prepared from knockdown clones, conversion of PGH2 to PGE2 was reduced by 85–90%. This resulted in clear phenotypic changes: MPGES-1 knockdown conferred decreased clonogenic capacity and slower growth of xenograft tumors (with disintegrated tissue structure) in nude mice. For DU145 cells, MPGES-1 knockdown gave increased apoptosis in response to genotoxic stress (adriamycin), which could be rescued by exogenous PGE2. The results suggest that MPGES-1 is an alternative therapeutic target in cancer cells expressing this enzyme.
Neuro-oncology | 2008
Ninib Baryawno; Baldur Sveinbjørnsson; Staffan Eksborg; Abiel Orrego; Lova Segerström; Carl Otto Öqvist; Stefan Holm; Bengt Gustavsson; Bertil Kågedal; Per Kogner; John Inge Johnsen
Prostaglandin E(2) (PGE(2)) has been shown to play important roles in several aspects of tumor development and progression. PGE(2) is synthesized from arachidonic acid by cyclooxygenases (COX) and prostaglandin E synthases (PGES) and mediates its biological activity through binding to the four prostanoid receptors EP(1) through EP(4). In this study, we show for the first time that medulloblastoma (MB), the most common malignant childhood brain tumor, expresses high levels of COX-2, microsomal prostaglandin E synthase-1, and EP(1) through EP(4) and secretes PGE(2). PGE(2) and the EP(2) receptor agonist butaprost stimulated MB cell proliferation. Treatment of MB cells with COX inhibitors suppressed PGE(2) production and induced caspase-dependent apoptosis. Similarly, specific COX-2 silencing by small interfering RNA inhibited MB cell growth. EP(1) and EP(3) receptor antagonists ONO-8713 and ONO-AE3-240, but not the EP(4) antagonists ONO-AE3-208 and AH 23848, inhibited tumor cell proliferation, indicating the significance of EP(1) and EP(3) but not EP(4) for MB growth. Administration of COX inhibitors at clinically achievable nontoxic concentrations significantly inhibited growth of established human MB xenografts. Apoptosis was increased, proliferation was reduced, and angiogenesis was inhibited in MBs treated with COX inhibitors. This study suggests that PGE(2) is important for MB growth and that therapies targeting the prostanoid metabolic pathway are potentially beneficial and should be tested in clinical settings for treatment of children with MB.
Clinical Cancer Research | 2007
Frida Ponthan; Malin Wickström; Helena Gleissman; Ole Martin Fuskevåg; Lova Segerström; Baldur Sveinbjørnsson; Christopher P.F. Redfern; Staffan Eksborg; Per Kogner; John Inge Johnsen
Purpose: Neuroblastoma is the most common and deadly solid tumor of childhood. Cyclooxygenase-2 is expressed in clinical neuroblastoma tumors and cell lines and inhibitors of this enzyme induce apoptosis in human neuroblastoma cells in vitro and in neuroblastoma xenografts in vivo. We hypothesized that the cyclooxygenase-2–specific inhibitor celecoxib could enhance the cytotoxic effect of chemotherapeutic drugs currently used in neuroblastoma treatment. Furthermore, we investigated if prophylactic treatment with celecoxib could prevent neuroblastoma tumor development in vivo. Experimental Design: Neuroblastoma cell cytotoxicity of chemotherapeutic drugs in combination with celecoxib was examined. In vivo, athymic rats carrying established SH-SY5Y xenografts were treated with celecoxib in combination with irinotecan, doxorubicin or etoposide, or with either drug alone. For prevention studies, rats received celecoxib in the diet, 250 to 2,500 ppm, from the time of tumor cell injection. Results: Celecoxib induced a synergistic or an additive cytotoxic effect in combination with doxorubicin, etoposide, irinotecan or vincristine in vitro. In vivo, treatment with celecoxib in combination with irinotecan or doxorubicin induced a significant growth inhibition of established neuroblastoma tumors. Rats receiving celecoxib in the diet showed a distinct dose-dependent delay in tumor development compared with untreated rats. Plasma levels of celecoxib were comparable with levels obtainable in humans. Conclusions: Celecoxib potentiates the antitumor effect of chemotherapeutic drugs currently used in neuroblastoma treatment, which argues for clinical trials combining these drugs. Celecoxib could also be a potential drug for treatment of minimal residual disease.