Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Balindiwe Sishi is active.

Publication


Featured researches published by Balindiwe Sishi.


Experimental Physiology | 2011

Diet-induced obesity alters signalling pathways and induces atrophy and apoptosis in skeletal muscle in a prediabetic rat model.

Balindiwe Sishi; Benjamin Loos; Beverly Ellis; Wayne Smith; Eugene F. du Toit; Anna-Mart Engelbrecht

Pro‐inflammatory and stress‐activated signalling pathways are important role players in the pathogenesis of obesity and insulin resistance. Obesity and type II diabetes are associated with chronic, low‐grade inflammation and elevated tumour necrosis factor‐α (TNF‐α) levels. There is increasing evidence that TNF‐α may play a critical role in skeletal muscle atrophy. However, the effects of obesity‐induced insulin resistance on these signalling pathways are poorly understood in skeletal muscle. Therefore, the present study addressed the effects of obesity‐induced insulin resistance on the activity of the ubiquitin ligases, nuclear factor‐κB, p38 MAPK and phosphoinositide 3‐kinase signalling pathways in the gastrocnemius muscle and compared these with muscle of standard chow‐fed control rats. Male Wistar rats were randomly allocated to a control diet group (standard commercial chow; 60% carbohydrates, 30% protein and 10% fat) or a cafeteria diet group (65% carbohydrates, 19% protein and 16% fat) for 16 weeks. Blood analysis was conducted to determine the impact of the model of obesity on circulating insulin, glucose, free fatty acids, TNF‐α and angiotensin II concentrations. The experimental animals were 18% heavier and had 68% greater visceral fat mass than their control counterparts and were dyslipidaemic. Significant increases in the ubiquitin ligase and MuRF‐1, as well as in caspase‐3 and poly‐ADP‐ribose polymerase cleavage were observed in the muscle of obese animals compared with the control rats. We propose that dyslipidaemia may be a mechanism for the activation of inflammatory/stress‐activated signalling pathways in obesity and type II diabetes, which will lead to apoptosis and atrophy in skeletal muscle.


Biochemical Pharmacology | 2013

Autophagy upregulation promotes survival and attenuates doxorubicin-induced cardiotoxicity

Balindiwe Sishi; Benjamin Loos; Jacques van Rooyen; Anna-Mart Engelbrecht

This study evaluated whether the manipulation of autophagy could attenuate the cardiotoxic effects of doxorubicin (DXR) in vitro as well as in a tumour-bearing mouse model of acute doxorubicin-induced cardiotoxicity. We examined the effect of an increase or inhibition of autophagy in combination with DXR on apoptosis, reactive oxygen species (ROS) production and mitochondrial function. H9C2 rat cardiac myoblasts were pre-treated with bafilomycin A1 (autophagy inhibitor, 10 nM) or rapamycin (autophagy inducer, 50 μM) followed by DXR treatment (3 μM). The augmentation of autophagy with rapamycin in the presence of DXR substantially ameliorated the detrimental effects induced by DXR. This combination treatment demonstrated improved cell viability, decreased apoptosis and ROS production and enhanced mitochondrial function. To corroborate these findings, GFP-LC3 mice were inoculated with a mouse breast cancer cell line (EO771). Following the appearance of tumours, animals were either treated with one injection of rapamycin (4 mg/kg) followed by two injections of DXR (10 mg/kg). Mice were then sacrificed and their hearts rapidly excised and utilized for biochemical and histological analyses. The combination treatment, rather than the combinants alone, conferred a cardioprotective effect. These hearts expressed down-regulation of the pro-apoptotic protein caspase-3 and cardiomyocyte cross-sectional area was preserved. These results strongly indicate that the co-treatment strategy with rapamycin can attenuate the cardiotoxic effects of DXR in a tumour-bearing mouse model.


Cytokine | 2011

Tumor necrosis factor alpha (TNF-α) inactivates the PI3-kinase/PKB pathway and induces atrophy and apoptosis in L6 myotubes.

Balindiwe Sishi; Anna-Mart Engelbrecht

Muscle atrophy poses a serious concern to patients inflicted with inflammatory diseases. An increasing body of evidence implies that TNF-α plays a critical role in muscle atrophy in a number of these clinical settings. The mechanisms mediating its effects are not completely understood and conflicting data regarding its anabolic and catabolic actions exists. To examine the functional significance and detailed morphological characteristics of TNF-α-induced muscle proteolysis, differentiated L6 myotubes were subjected to increasing concentrations of recombinant TNF-α for 24 and 48 h. Data analysis of cell death showed that TNF-α induced a combination of apoptosis and necrosis in high concentrations. TNF-R1, rather than TNF-R2, was significantly upregulated. In addition, the transcription factors, NF-κB and FKHR were rapidly activated thus leading to increased expression of ubiquitin ligases, MuRF-1 and MAFbx. Muscle fiber diameter decreased with increasing TNF-α concentrations and was associated with attenuation of the PI3-K/Akt pathway as well as significant reductions in differentiation markers. Furthermore, treatment of L6 myotubes with exogenous TNF-α strongly potentiates its proteolytic effects through certain MAPKs that are activated. These observations suggest that TNF-α induces muscle proteolysis in a dose-dependent manner via various signal transduction pathways.


Toxicology | 2013

Doxorubicin induces protein ubiquitination and inhibits proteasome activity during cardiotoxicity

Balindiwe Sishi; Benjamin Loos; Jacques van Rooyen; Anna-Mart Engelbrecht

Anthracycline-induced cardiotoxicity is a clinically complex syndrome that leads to substantial morbidity and mortality for cancer survivors. Despite several years of research, the underlying molecular mechanisms remain largely undefined and thus effective therapies to manage this condition are currently non-existent. This study therefore aimed to determine the contribution of the ubiquitin-proteasome pathway (UPP) and endoplasmic reticulum (ER)-stress within this context. Cardiotoxicity was induced with the use of doxorubicin (DXR) in H9C2 rat cardiomyoblasts (3 μM) for 24 h, whereas the tumour-bearing GFP-LC3 mouse model was treated with a cumulative dose of 20 mg/kg. Markers for proteasome-specific protein degradation were significantly upregulated in both models following DXR treatment, however proteasome activity was lost. Moreover, ER-stress as assessed by increased ER load was considerably augmented (in vitro) with modest binding of DXR with ER. These results suggest that DXR induces intrinsic activation of the UPP and ER stress which ultimately contributes to dysfunction of the myocardium during this phenomenon.


Cell Biology and Toxicology | 2015

Tumor necrosis factor alpha stimulates p62 accumulation and enhances proteasome activity independently of ROS

Caleigh M. Opperman; Balindiwe Sishi

Circulating TNF-α levels are elevated in a wide variety of cardiovascular pathologies including congestive heart failure (CHF). This cytokine is one of the leading mediators of the immune inflammatory response with widespread biological functions regulated by membrane receptors. The pathophysiological implication of the downstream effects of activating the TNF-α system in CHF appears to depend on its direct effects on the heart and endothelium. Evidence supporting the notion that circulating TNF-α promotes protein breakdown was initially obtained from studies utilizing transgenic animals overexpressing TNF-α, animals with experimental diseases that augment TNF-α and in animals treated with exogenous TNF-α. It was then demonstrated that TNF-α acts directly on cultured myotubes to stimulate catabolism; however, whether the effects are the same in the heart remains poorly understood. The present study shows that TNF-α treatment induces autophagy, but clearance through this pathway appears obstructed and, consequently, results in increased protein ubiquitination. Furthermore, prolonged TNF-α treatment enhanced E3 ubiquitin ligase expression but reduced activity of the proteasome. These results suggest that TNF-α induces sarcomeric dysfunction and remodeling by disrupting autophagy and elevating the degradation of myofibrillar proteins. Therefore, myocardial remodeling, as a consequence to reduced contractile proteins, contributes to contractile dysfunction, a symptom often observed in the end stages of CHF.


Experimental Biology and Medicine | 2012

Daunorubicin therapy is associated with upregulation of E3 ubiquitin ligases in the heart.

Balindiwe Sishi; Dirk Bester; Anita Wergeland; Benjamin Loos; Anne K. Jonassen; Jacques van Rooyen; Anna-Mart Engelbrecht

Daunorubicin (DNR) and doxorubicin (DOX) are two of the most effective anthracycline drugs known for the treatment of systemic neoplasms and solid tumors. However, their clinical use is hampered due to profound cardiotoxicity. The mechanism by which DNR injures the heart remains to be fully elucidated. Recent reports have indicated that DOX activates ubiquitin proteasome-mediated degradation of specific transcription factors; however, no reports exist on the effect of DNR on the E3 ubiquitin ligases, MURF-1 (muscle ring finger 1) and MAFbx (muscle atrophy F-box). The aim of this study was to investigate the effect of DNR treatment on the protein and organelle degradation systems in the heart and to elucidate some of the signalling mechanisms involved. Adult rats were divided into two groups where one group received six intraperitoneal injections of 2 mg/kg DNR on alternate days and the other group received saline injections as control. Hearts were excised and perfused on a working heart system the day after the last injection and freeze-clamped for biochemical analysis. DNR treatment significantly attenuated cardiac function and increased apoptosis in the heart. DNR-induced cardiac cytotoxicity was associated with upregulation of the E3 ligases, MURF-1 and MAFbx and also caused significant increases in two markers of autophagy, beclin-1 and LC3. These changes observed in the heart were also associated with attenuation of the phosphoinositide 3-kinase/Akt signalling pathway.


Cell Biochemistry and Function | 2011

Dietary red palm oil protects the heart against the cytotoxic effects of anthracycline

Anita Wergeland; Dirk Bester; Balindiwe Sishi; Anna-Mart Engelbrecht; Anne K. Jonassen; J. van Rooyen

Strong anti‐neoplastic anthracyclines like daunorubicin (DNR) and doxorubicin (DOX) have high efficacy against systemic neoplasm and solid tumours. However, clinically, they cause chronic cardiomyopathy and congestive heart failure. Red palm oil (RPO) supplementation can protect the heart against ischemic injury. We therefore hypothesize that supplementation with RPO during chemotherapy may protect the heart.


Scandinavian Cardiovascular Journal | 2015

Intermittent insulin treatment mimics ischemic postconditioning via MitoKATP channels, ROS, and RISK

Erik Helgeland; Lars Breivik; Balindiwe Sishi; Anna-Mart Engelbrecht; Anne K. Jonassen

Abstract Objectives. It has previously been demonstrated that 15-min continuous insulin infusion at immediate reperfusion affords cardioprotection. This study sought to reduce the treatment time of insulin and test if intermittent insulin infusions can mimic ischemic postconditioning. Design. In a Langendorff perfused rat heart model of regional ischemia, hearts were at the onset of reperfusion subjected to either 5- or 1-min continuous insulin infusion or 3 × 30 s intermittent insulin infusions (InsPost); with or without inhibitors of Akt (SH-6), p70s6-kinase (rapamycin), mitochondrial ATP-sensitive potassium channels (5-hydroxydecanoic acid [5-HD]), or a scavenger of reactive oxygen species (ROS; 2-mercaptopropionyl glycine [MPG]). Infarct size is expressed as percent of area at risk and presented as mean ± standard error of the mean or s.e.m. Results. Only InsPost was able to reduce infarct size compared with controls (InsPost 33 ± 6% vs. Ctr 52 ± 4%, p < 0.05.). This cardioprotection was abrogated by co-administering SH-6, rapamycin, 5-HD, or MPG. (InsPost + SH-6 56 ± 9%, InsPost + Rapa 55 ± 8%, InsPost + 5-HD 56 ± 7%, InsPost + MPG 60 ± 3% vs. InsPost 33 ± 6% p < 0.05). These results were corroborated by a significant increase in phosphorylated Akt and p70s6k in the InsPost group compared with controls. Conclusion. Short intermittent insulin infusions can mimic ischemic postconditioning and reduce myocardial infarct size via Akt/p70s6k and mKATP channels/ROS-dependent signaling.


Cell Biochemistry and Function | 2018

Autophagy is essential for the maintenance of amino acids and ATP levels during acute amino acid starvation in MDAMB231 cells

Mark Thomas; Tanja Davis; Ben Loos; Balindiwe Sishi; Barbara Huisamen; Hans Strijdom; Anna-Mart Engelbrecht

Autophagy plays a major role in the adaptive metabolic response of cancer cells during adverse conditions such as nutrient deprivation. However, specific data that assess metabolite profiles in context with adenosine triphosphate (ATP) availability and cell death susceptibility remain limited. Human breast cancer cells, MDAMB231, and normal breast epithelial cells, MCF12A, were subjected to short‐term amino acid starvation and the cellular apoptotic and autophagic responses assessed. The role of autophagy in the control of cellular amino acid, ATP, free fatty acid, and glucose levels during amino acid starvation were compared. We demonstrate that breast cancer cells have an increased metabolic demand contributing to significant amino acid and ATP depletion in a nutrient‐poor environment. Upregulation of autophagy was important for the generation of amino acids and free fatty acids and maintenance of cellular ATP levels. In contrast to normal cells, breast cancer cells were unable to maintain the response after 12 hours of amino acid starvation. Regulation of autophagic activity in these environments had indirect consequences on cell death susceptibility. Overall, our data provide support for autophagy as an important survival mechanism capable of providing metabolic substrates when cancer cells are faced with nutrient‐deprived environments.


The Egyptian Heart Journal | 2017

Cardiomyocyte differentiation : experience and observations from 2 laboratories

Victoria Patten; I Chabaesele; Balindiwe Sishi; Derick van Vuuren

The undifferentiated clonal cell line, H9c2, derived from left ventricular rat heart tissue, has been extensively used in cardiovascular research. In the present study, 2 independent laboratories aimed to investigate the cells’ capacity to differentiate into distinct cardiac-like cells. Undifferentiated H9c2 cells were supplemented daily for a period of 6 - 12 days, with varying concentrations of retinoic acid (RA) (10nM, 30nM and 1μM), in standard cell culture medium containing either 1% foetal bovine, or horse serum, in order to stimulate differentiation of the cells into a more cardiac-specific phenotype. Light microscopy confirmed some degree of morphological change associated with differentiation, and a significant increase in oxidative phosphorylation following RA treatment was observed. However, Western blot probing for the cardiac-specific markers Cardiac Troponin T (cTnT) and Myosin Light Chain-2v (MLC2v) indicated little to no differentiation, although immunocytochemistry indicated the presence of cTnT expression. Thus, it was found that the differentiation protocol induced differentiation in some, but not all cells, thereby generating a heterogeneous cell population. Our findings suggest that the H9c2 cell line may display some degree of resistance to differentiation. This should be kept in mind when considering to use this model for cardiovascular research.

Collaboration


Dive into the Balindiwe Sishi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacques van Rooyen

Cape Peninsula University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ben Loos

Stellenbosch University

View shared research outputs
Top Co-Authors

Avatar

Dirk Bester

Cape Peninsula University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge