Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bálint Csörgő is active.

Publication


Featured researches published by Bálint Csörgő.


Molecular Systems Biology | 2014

Bacterial evolution of antibiotic hypersensitivity

Viktória Lázár; Gajinder Pal Singh; Réka Spohn; Istvan Nagy; Balázs Horváth; Mónika Hrtyan; Róbert Busa-Fekete; Balázs Bogos; Orsolya Méhi; Bálint Csörgő; György Pósfai; Gergely Fekete; Balázs Szappanos; Balázs Kégl; Balázs Papp; Csaba Pál

The evolution of resistance to a single antibiotic is frequently accompanied by increased resistance to multiple other antimicrobial agents. In sharp contrast, very little is known about the frequency and mechanisms underlying collateral sensitivity. In this case, genetic adaptation under antibiotic stress yields enhanced sensitivity to other antibiotics. Using large‐scale laboratory evolutionary experiments with Escherichia coli, we demonstrate that collateral sensitivity occurs frequently during the evolution of antibiotic resistance. Specifically, populations adapted to aminoglycosides have an especially low fitness in the presence of several other antibiotics. Whole‐genome sequencing of laboratory‐evolved strains revealed multiple mechanisms underlying aminoglycoside resistance, including a reduction in the proton‐motive force (PMF) across the inner membrane. We propose that as a side effect, these mutations diminish the activity of PMF‐dependent major efflux pumps (including the AcrAB transporter), leading to hypersensitivity to several other antibiotics. More generally, our work offers an insight into the mechanisms that drive the evolution of negative trade‐offs under antibiotic selection.


Nature Communications | 2014

Genome-wide analysis captures the determinants of the antibiotic cross-resistance interaction network

Lázár; Istvan Nagy; Réka Spohn; Bálint Csörgő; Ádám Györkei; Ákos Nyerges; Balázs Horváth; Vörös A; Róbert Busa-Fekete; Mónika Hrtyan; Balázs Bogos; Orsolya Méhi; Gergely Fekete; Balázs Szappanos; Balázs Kégl; Balázs Papp; Csaba Pál

Understanding how evolution of antimicrobial resistance increases resistance to other drugs is a challenge of profound importance. By combining experimental evolution and genome sequencing of 63 laboratory-evolved lines, we charted a map of cross-resistance interactions between antibiotics in Escherichia coli, and explored the driving evolutionary principles. Here, we show that (1) convergent molecular evolution is prevalent across antibiotic treatments, (2) resistance conferring mutations simultaneously enhance sensitivity to many other drugs and (3) 27% of the accumulated mutations generate proteins with compromised activities, suggesting that antibiotic adaptation can partly be achieved without gain of novel function. By using knowledge on antibiotic properties, we examined the determinants of cross-resistance and identified chemogenomic profile similarity between antibiotics as the strongest predictor. In contrast, cross-resistance between two antibiotics is independent of whether they show synergistic effects in combination. These results have important implications on the development of novel antimicrobial strategies.


Microbial Cell Factories | 2012

Low-mutation-rate, reduced-genome Escherichia coli: an improved host for faithful maintenance of engineered genetic constructs

Bálint Csörgő; Tamás Fehér; Edit Tímár; Frederick R. Blattner; György Pósfai

BackgroundMolecular mechanisms generating genetic variation provide the basis for evolution and long-term survival of a population in a changing environment. In stable, laboratory conditions, the variation-generating mechanisms are dispensable, as there is limited need for the cell to adapt to adverse conditions. In fact, newly emerging, evolved features might be undesirable when working on highly refined, precise molecular and synthetic biological tasks.ResultsBy constructing low-mutation-rate variants, we reduced the evolutionary capacity of MDS42, a reduced-genome E. coli strain engineered to lack most genes irrelevant for laboratory/industrial applications. Elimination of diversity-generating, error-prone DNA polymerase enzymes involved in induced mutagenesis achieved a significant stabilization of the genome. The resulting strain, while retaining normal growth, showed a significant decrease in overall mutation rates, most notably under various stress conditions. Moreover, the error-prone polymerase-free host allowed relatively stable maintenance of a toxic methyltransferase-expressing clone. In contrast, the parental strain produced mutant clones, unable to produce functional methyltransferase, which quickly overgrew the culture to a high ratio (50% of clones in a 24-h induction period lacked functional methyltransferase activity). The surprisingly large stability-difference observed between the strains was due to the combined effects of high stress-induced mutagenesis in the parental strain, growth inhibition by expression of the toxic protein, and selection/outgrowth of mutants no longer producing an active, toxic enzyme.ConclusionsBy eliminating stress-inducible error-prone DNA-polymerases, the genome of the mobile genetic element-free E. coli strain MDS42 was further stabilized. The resulting strain represents an improved host in various synthetic and molecular biological applications, allowing more stable production of growth-inhibiting biomolecules.


Proceedings of the National Academy of Sciences of the United States of America | 2016

A highly precise and portable genome engineering method allows comparison of mutational effects across bacterial species

Ákos Nyerges; Bálint Csörgő; Istvan Nagy; Balázs Bálint; Péter Bihari; Viktória Lázár; Gábor Apjok; Kinga Umenhoffer; Balázs Bogos; György Pósfai; Csaba Pál

Significance Current tools for bacterial genome engineering suffer from major limitations. They have been optimized for a few laboratory model strains, lead to the accumulation of numerous undesired, off-target modifications, and demand extensive modification of the host genome prior to large-scale editing. Herein, we address these problems and present a simple, all-in-one solution. By utilizing a highly conserved mutant allele of the bacterial mismatch-repair system, we were able to gain unprecedented precision in the control over the generation of desired modifications in multiple bacterial species. These results have broad implications with regards to both biotechnological and clinical applications. Currently available tools for multiplex bacterial genome engineering are optimized for a few laboratory model strains, demand extensive prior modification of the host strain, and lead to the accumulation of numerous off-target modifications. Building on prior development of multiplex automated genome engineering (MAGE), our work addresses these problems in a single framework. Using a dominant-negative mutant protein of the methyl-directed mismatch repair (MMR) system, we achieved a transient suppression of DNA repair in Escherichia coli, which is necessary for efficient oligonucleotide integration. By integrating all necessary components into a broad-host vector, we developed a new workflow we term pORTMAGE. It allows efficient modification of multiple loci, without any observable off-target mutagenesis and prior modification of the host genome. Because of the conserved nature of the bacterial MMR system, pORTMAGE simultaneously allows genome editing and mutant library generation in other biotechnologically and clinically relevant bacterial species. Finally, we applied pORTMAGE to study a set of antibiotic resistance-conferring mutations in Salmonella enterica and E. coli. Despite over 100 million y of divergence between the two species, mutational effects remained generally conserved. In sum, a single transformation of a pORTMAGE plasmid allows bacterial species of interest to become an efficient host for genome engineering. These advances pave the way toward biotechnological and therapeutic applications. Finally, pORTMAGE allows systematic comparison of mutational effects and epistasis across a wide range of bacterial species.


Nucleic Acids Research | 2014

Conditional DNA repair mutants enable highly precise genome engineering

Ákos Nyerges; Bálint Csörgő; Istvan Nagy; Dóra Latinovics; Béla Szamecz; György Pósfai; Csaba Pál

Oligonucleotide-mediated multiplex genome engineering is an important tool for bacterial genome editing. The efficient application of this technique requires the inactivation of the endogenous methyl-directed mismatch repair system that in turn leads to a drastically elevated genomic mutation rate and the consequent accumulation of undesired off-target mutations. Here, we present a novel strategy for mismatch repair evasion using temperature-sensitive DNA repair mutants and temporal inactivation of the mismatch repair protein complex in Escherichia coli. Our method relies on the transient suppression of DNA repair during mismatch carrying oligonucleotide integration. Using temperature-sensitive control of methyl-directed mismatch repair protein activity during multiplex genome engineering, we reduced the number of off-target mutations by 85%, concurrently maintaining highly efficient and unbiased allelic replacement.


PLOS Biology | 2017

Phenotypic heterogeneity promotes adaptive evolution

Zoltán Bódi; Zoltan Farkas; Dmitry Nevozhay; Dorottya Kalapis; Viktória Lázár; Bálint Csörgő; Ákos Nyerges; Béla Szamecz; Gergely Fekete; Balázs Papp; Hugo Araújo; José Luís Oliveira; Gabriela R. Moura; Manuel A. S. Santos; Tamás Székely; Gábor Balázsi; Csaba Pál

Genetically identical cells frequently display substantial heterogeneity in gene expression, cellular morphology and physiology. It has been suggested that by rapidly generating a subpopulation with novel phenotypic traits, phenotypic heterogeneity (or plasticity) accelerates the rate of adaptive evolution in populations facing extreme environmental challenges. This issue is important as cell-to-cell phenotypic heterogeneity may initiate key steps in microbial evolution of drug resistance and cancer progression. Here, we study how stochastic transitions between cellular states influence evolutionary adaptation to a stressful environment in yeast Saccharomyces cerevisiae. We developed inducible synthetic gene circuits that generate varying degrees of expression stochasticity of an antifungal resistance gene. We initiated laboratory evolutionary experiments with genotypes carrying different versions of the genetic circuit by exposing the corresponding populations to gradually increasing antifungal stress. Phenotypic heterogeneity altered the evolutionary dynamics by transforming the adaptive landscape that relates genotype to fitness. Specifically, it enhanced the adaptive value of beneficial mutations through synergism between cell-to-cell variability and genetic variation. Our work demonstrates that phenotypic heterogeneity is an evolving trait when populations face a chronic selection pressure. It shapes evolutionary trajectories at the genomic level and facilitates evolutionary rescue from a deteriorating environmental stress.


Molecular Biology and Evolution | 2014

Perturbation of Iron Homeostasis Promotes the Evolution of Antibiotic Resistance

Orsolya Méhi; Balázs Bogos; Bálint Csörgő; Ferenc Pál; Ákos Nyerges; Balázs Papp; Csaba Pál

Evolution of antibiotic resistance in microbes is frequently achieved by acquisition of spontaneous mutations during antimicrobial therapy. Here, we demonstrate that inactivation of a central transcriptional regulator of iron homeostasis (Fur) facilitates laboratory evolution of ciprofloxacin resistance in Escherichia coli. To decipher the underlying molecular mechanisms, we first performed a global transcriptome analysis and demonstrated that the set of genes regulated by Fur changes substantially in response to antibiotic treatment. We hypothesized that the impact of Fur on evolvability under antibiotic pressure is due to the elevated intracellular concentration of free iron and the consequent enhancement of oxidative damage-induced mutagenesis. In agreement with expectations, overexpression of iron storage proteins, inhibition of iron transport, or anaerobic conditions drastically suppressed the evolution of resistance, whereas inhibition of the SOS response-mediated mutagenesis had only a minor effect. Finally, we provide evidence that a cell permeable iron chelator inhibits the evolution of resistance. In sum, our work revealed the central role of iron metabolism in the de novo evolution of antibiotic resistance, a pattern that could influence the development of novel antimicrobial strategies.


Current Opinion in Microbiology | 2016

System-level genome editing in microbes

Bálint Csörgő; Ákos Nyerges; György Pósfai; Tamás Fehér

The release of the first complete microbial genome sequences at the end of the past century opened the way for functional genomics and systems-biology to uncover the genetic basis of various phenotypes. The surge of available sequence data facilitated the development of novel genome editing techniques for system-level analytical studies. Recombineering allowed unprecedented throughput and efficiency in microbial genome editing and the recent discovery and widespread use of RNA-guided endonucleases offered several further perspectives: (i) previously recalcitrant species became editable, (ii) the efficiency of recombineering could be elevated, and as a result (iii) diverse genomic libraries could be generated more effectively. Supporting recombineering by RNA-guided endonucleases has led to success stories in metabolic engineering, but their use for system-level analysis is mostly unexplored. For the full exploitation of opportunities that are offered by the genome editing proficiency, future development of large scale analytical procedures is also vitally needed.


Antimicrobial Agents and Chemotherapy | 2013

Genomewide Screen for Modulators of Evolvability under Toxic Antibiotic Exposure

Orsolya Méhi; Balázs Bogos; Bálint Csörgő; Csaba Pál

ABSTRACT Antibiotic resistance is generally selected within a window of concentrations high enough to inhibit wild-type growth but low enough for new resistant mutants to emerge. We studied de novo evolution of resistance to ciprofloxacin in an Escherichia coli knockout library. Five null mutations had little or no effect on intrinsic antibiotic susceptibility but increased the upper antibiotic dosage to which initially sensitive populations could adapt. These mutations affect mismatch repair, translation fidelity, and iron homeostasis.


Proceedings of the National Academy of Sciences of the United States of America | 2018

Directed evolution of multiple genomic loci allows the prediction of antibiotic resistance

Ákos Nyerges; Bálint Csörgő; Gábor Draskovits; Bálint Kintses; Petra Szili; Györgyi Ferenc; Tamás Révész; Eszter Ari; Istvan Nagy; Balázs Bálint; Bálint Márk Vásárhelyi; Péter Bihari; Mónika Számel; David Balogh; Henrietta Papp; Dorottya Kalapis; Balázs Papp; Csaba Pál

Significance Antibiotic development is frequently plagued by the rapid emergence of drug resistance. However, assessing the risk of resistance development in the preclinical stage is difficult. By building on multiplex automated genome engineering, we developed a method that enables precise mutagenesis of multiple, long genomic segments in multiple species without off-target modifications. Thereby, it enables the exploration of vast numbers of combinatorial genetic alterations in their native genomic context. This method is especially well-suited to screen the resistance profiles of antibiotic compounds. It allowed us to predict the evolution of resistance against antibiotics currently in clinical trials. We anticipate that it will be a useful tool to identify resistance-proof antibiotics at an early stage of drug development. Antibiotic development is frequently plagued by the rapid emergence of drug resistance. However, assessing the risk of resistance development in the preclinical stage is difficult. Standard laboratory evolution approaches explore only a small fraction of the sequence space and fail to identify exceedingly rare resistance mutations and combinations thereof. Therefore, new rapid and exhaustive methods are needed to accurately assess the potential of resistance evolution and uncover the underlying mutational mechanisms. Here, we introduce directed evolution with random genomic mutations (DIvERGE), a method that allows an up to million-fold increase in mutation rate along the full lengths of multiple predefined loci in a range of bacterial species. In a single day, DIvERGE generated specific mutation combinations, yielding clinically significant resistance against trimethoprim and ciprofloxacin. Many of these mutations have remained previously undetected or provide resistance in a species-specific manner. These results indicate pathogen-specific resistance mechanisms and the necessity of future narrow-spectrum antibacterial treatments. In contrast to prior claims, we detected the rapid emergence of resistance against gepotidacin, a novel antibiotic currently in clinical trials. Based on these properties, DIvERGE could be applicable to identify less resistance-prone antibiotics at an early stage of drug development. Finally, we discuss potential future applications of DIvERGE in synthetic and evolutionary biology.

Collaboration


Dive into the Bálint Csörgő's collaboration.

Top Co-Authors

Avatar

Csaba Pál

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ákos Nyerges

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Balázs Papp

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Balázs Bogos

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

György Pósfai

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Istvan Nagy

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Gergely Fekete

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Orsolya Méhi

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Viktória Lázár

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Tamás Fehér

Hungarian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge