Bálint Szokol
Semmelweis University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bálint Szokol.
Journal of Physical Chemistry B | 2010
Zoltán Varga; Szilvia Berényi; Bálint Szokol; Laszlo Orfi; György Kéri; István Peták; Armin Hoell; Attila Bóta
The evaluation of the radial electron density profile of a drug containing a sterically stabilized liposomal system is described. Using synchrotron small-angle X-ray scattering, we were able to characterize the hydrophilic shell of the polyethylene glycol chains. Using a Gaussian model for describing the electron density profile along the normal of the bilayer, we got an asymmetric distribution of PEGylated lipids in accordance with theoretical considerations. Moreover, we used anomalous X-ray scattering to study the localization of a hydrophobic drug (a kinase inhibitor), which revealed that these molecules are mainly located in the hydrocarbon chain region of the phospholipid bilayer.
Current Cancer Drug Targets | 2010
István Kenessey; M. Keszthelyi; Z. Kramer; Judit Berta; A. Adam; Judit Dobos; M. Mildner; B. Flachner; S. Cseh; G. Barna; Bálint Szokol; Laszlo Orfi; György Kéri; Balazs Dome; Walter Klepetko; József Tímár; József Tóvári
The hepatocyte growth factor/scatter factor (HGF/SF) tyrosine kinase (TK) receptor c-Met plays a crucial role in the development of the invasive phenotype of tumors and thus represents an attractive candidate for targeted therapies in a variety of malignancies, including human malignant melanoma (MM). In contrast to what has been shown previously, we were not able to detect any genetic alterations, either in the juxtamembrane- or in the TK-domain of c-Met, in the studied MM cell lines. Nevertheless, c-Met was constitutively active in these cell lines without exogenous HGF/SF stimulation. The active receptor was localized to the adhesion sites of the cells. Addition of the c-Met TK inhibitor SU11274 specifically decreased the phosphotyrosine signal at the focal adhesions sites, which was accompanied by a decrease in cell proliferation as well as an increase in apoptotic cells. In addition, non-apoptotic concentrations of SU11274 significantly reduced the in vitro migratory capacity of MM cells in the modified Boyden-chamber assay. Administration of SU11274 significantly decreased primary tumor growth as well as the capacity for liver colony formation of MM cells in SCID mice. Our study provides the first evidence for an in vivo antitumor activity of SU11274 in a human melanoma xenograft model, and suggests c-Met as a valid target for the therapy of MM. Consequently, SU11274 treatment might represent a useful strategy for controlling melanoma progression and metastasis in patients with MM.
International Journal of Nanomedicine | 2012
M.E.M. Dolman; Stefan Harmsen; Ebel H.E. Pieters; Rolf W. Sparidans; Marie Lacombe; Bálint Szokol; László Őrfi; György Kéri; Gert Storm; Wim E. Hennink; Robbert J. Kok
Background Activated proximal tubular cells play an important role in renal fibrosis. We investigated whether sunitinib and a kidney-targeted conjugate of sunitinib were capable of attenuating fibrogenic events in tubulointerstitial fibrosis. Methods A kidney-targeted conjugate was prepared by linkage of a sunitinib analog (named 17864) via a platinum-based linker to the kidney-specific carrier lysozyme. Pharmacological activity of 17864-lysozyme was evaluated in human kidney proximal tubular cells (HK-2); the capability of the kidney-directed conjugate to accumulate in the kidneys was studied in mice. Potential antifibrotic effects of a single-dose treatment were evaluated in the unilateral ureteral obstruction (UUO) model in mice. Results The 17864-lysozyme conjugate and its metabolites strongly inhibited tyrosine kinase activity. Upon intravenous injection, 17864-lysozyme rapidly accumulated in the kidneys and provided sustained renal drug levels for up to 3 days after a single dose. Renal drug level area under the curve was increased 28-fold versus an equimolar dose of sunitinib malate. Daily treatment of UUO mice with a high dose of sunitinib malate (50 mg/kg) resulted in antifibrotic responses, but also induced drug-related toxicity. A single dose of 17864-lysozyme (equivalent to 1.8 mg/kg sunitinib) was safe but showed no antifibrotic effects. Conclusion Multikinase inhibitors like sunitinib can be of benefit in the treatment of fibrotic diseases, provided that their safety can be improved by strategies as presented in this paper, and sustained renal levels can be achieved.
Bioconjugate Chemistry | 2011
Stefan Harmsen; M.E.M. Dolman; Nemes Z; Marie Lacombe; Bálint Szokol; János Pató; György Kéri; Laszlo Orfi; Gert Storm; Wim E. Hennink; Robbert J. Kok
Multikinase inhibitors are potent anticancer drugs that simultaneously intervene in multiple related signaling cascades, thus being capable of blocking salvage pathways that may play a role in the development of drug resistance. Multikinase inhibitors are increasingly evaluated for indications other than cancer, but long-term safety risks dictated by off-organ toxicities of these agents may prevent their safe and effective use. Here, we describe a new approach in which platinum coordination chemistry is applied for the development of a cell-selective multikinase inhibitor bioconjugate. The platinum(II) kinase inhibitor bioconjugate was designed to be active with the linker attached to the inhibitor and displayed improved activity by enhanced cell specificity as well as enhanced intracellular retention, thereby prolonging its pharmacological activity. In addition, the utilized platinum-based linkage technology potentiated the inhibitory activity of the multikinase inhibitor. These features in combination with carrier-mediated uptake in the target cells may revolutionize dosing regimens and safety profiles of (multi)kinase inhibitors.
Journal of Biomolecular Screening | 2016
Tijmen H. Booij; Maarten Klop; Kuan Yan; Csaba Szántai-Kis; Bálint Szokol; Laszlo Orfi; Bob van de Water; György Kéri; Leo Price
3D tissue cultures provide a more physiologically relevant context for the screening of compounds, compared with 2D cell cultures. Cells cultured in 3D hydrogels also show complex phenotypes, increasing the scope for phenotypic profiling. Here we describe a high-content screening platform that uses invasive human prostate cancer cells cultured in 3D in standard 384-well assay plates to study the activity of potential therapeutic small molecules and antibody biologics. Image analysis tools were developed to process 3D image data to measure over 800 phenotypic parameters. Multiparametric analysis was used to evaluate the effect of compounds on tissue morphology. We applied this screening platform to measure the activity and selectivity of inhibitors of the c-Met and epidermal growth factor (EGF) receptor (EGFR) tyrosine kinases in 3D cultured prostate carcinoma cells. c-Met and EGFR activity was quantified based on the phenotypic profiles induced by their respective ligands, hepatocyte growth factor and EGF. The screening method was applied to a novel collection of 80 putative inhibitors of c-Met and EGFR. Compounds were identified that induced phenotypic profiles indicative of selective inhibition of c-Met, EGFR, or bispecific inhibition of both targets. In conclusion, we describe a fully scalable high-content screening platform that uses phenotypic profiling to discriminate selective and nonselective (off-target) inhibitors in a physiologically relevant 3D cell culture setting.
Current Medicinal Chemistry | 2013
Han Kiat Ho; Gábor Németh; Y. R. Ng; E. Pang; Csaba Szántai-Kis; Zsákai L; Nóra Breza; Zoltán Greff; Zoltán Horváth; János Pató; István Szabadkai; Bálint Szokol; Ferenc Baska; Laszlo Orfi; Axel Ullrich; György Kéri; Boon Tin Chua
Fibroblast growth factor receptor-4 (FGFR4) is a tyrosine kinase with a range of important physiological functions. However, it is also frequently mutated in various cancers and is now generating significant interest as a potential therapeutic target. Unfortunately, biochemical characterization of its role in disease, and further evaluation as a drug target is hampered by lack of a specific inhibitor. We aimed to discover new inhibitors for FGFR4 ab initio using a strategy combining in silico, in vitro and cell-based assays. We used the homologous FGFR1 to calculate docking scores of a chemically-diverse library of approximately 2000 potential kinase inhibitors. Nineteen potential inhibitors and ten randomly- selected negative controls were taken forward for in vitro FGFR4 kinase assays. All compounds with good docking scores significantly inhibited FGFR4 kinase activity, some with sub-micromolar (most potent being V4-015 with an IC(50) of 0.04 μM). Four of these compounds also demonstrated substantial activity in cellular assays using the FGFR4- overexpressing breast carcinoma cell line, MDA-MB453. Through immunoblot assays, these compounds were shown to block the phosphorylation of the FGFR4 adaptor protein, FGFR substrate protein-2α (FRS2α). The most potent compound to date, V4-015, suppressed proliferation of MDA-MB453 cells at sub-micromolar concentrations, activated the pro-apoptotic caspases 3/7 and inhibited cellular migration. While achieving complete selectivity of this compound for FGFR4 will require further lead optimization, this study has successfully identified new chemical scaffolds with unprecedented FGFR4 inhibition capacities that will support mechanism of action studies and future anti-cancer drug design.
Macromolecular Bioscience | 2012
M.E.M. Dolman; Kim M.A. van Dorenmalen; Ebel H.E. Pieters; Rolf W. Sparidans; Marie Lacombe; Bálint Szokol; László Őrfi; György Kéri; Niels Bovenschen; Gert Storm; Wim E. Hennink; Robbert J. Kok
The development of a macromolecular conjugate of a multitargeted tyrosine kinase inhibitor is described that can be used for renal-specific delivery into proximal tubular cells. A novel sunitinib analogue, that is, 17864, is conjugated to a NH(2) -PAMAM-G3 dendrimer via the platinum (II)-based Universal Linkage System (ULS™). The activity of 17864 is retained after coordination to the ULS linker alone or when coupled to NH(2) -PAMAM-G3. 17864-UlS-NH(2) -PAMAM-G3 is non-toxic to proximal tubular cells in vitro. After intravenous administration to mice, 17864-UlS-NH(2) -PAMAM-G3 rapidly and efficiently accumulates in the kidneys. These results are encouraging for future studies focusing on the development of novel therapeutics for the treatment of renal diseases.
ACS Medicinal Chemistry Letters | 2014
Bálint Szokol; Pál Gyulavári; Ibolya Kurkó; Ferenc Baska; Csaba Szántai-Kis; Zoltán Greff; Z. Orfi; István Peták; Kinga Penzes; Robert Torka; Axel Ullrich; Laszlo Orfi; Tibor Vántus; György Kéri
Activating mutations in the epidermal growth factor receptor (EGFR) have been identified in a subset of non-small cell lung cancer (NSCLC), which is one of the leading cancer types worldwide. Application of EGFR tyrosine kinase inhibitors leads to acquired resistance by secondary EGFR mutations or by amplification of the hepatocyte growth factor receptor (c-Met) gene. Although several EGFR and c-Met inhibitors have been reported, potent dual EGFR/c-Met inhibitors, which can overcome this latter resistance mechanism, have hitherto not been published and have not reached clinical trials. In the present study we have identified dual EGFR/c-Met inhibitors and designed novel N-[4-(quinolin-4-yloxy)-phenyl]-biarylsulfonamide derivatives, which inhibit the c-Met receptor and both the wild-type and the activating mutant EGFR kinases in nanomolar range. We have demonstrated by Western blot analysis that compound 10 inhibits EGFR and c-Met phosphorylation at cellular level and effectively inhibits viability of the NSCLC cell lines.
Bioorganic & Medicinal Chemistry Letters | 2018
Zsófia Czudor; Mária Balogh; Péter Bánhegyi; Sándor Boros; Nóra Breza; Judit Dobos; Márk Fábián; Zoltán Horváth; Eszter Illyés; Péter Markó; Anna Sipos; Csaba Szántai-Kis; Bálint Szokol; László Őrfi
Cyclin-dependent kinases (CDKs) and Polo-like kinases (PLKs) play key role in the regulation of the cell cycle. The aim of our study was originally the further development of our recently discovered polo-like kinase 1 (PLK1) inhibitors. A series of new 2,4-disubstituted pyrimidine derivatives were synthesized around the original hit, but their PLK1 inhibitory activity was very poor. However the novel compounds showed nanomolar CDK9 inhibitory activity and very good antiproliferative effect on multiple myeloma cell lines (RPMI-8226).
Bioorganic & Medicinal Chemistry Letters | 2018
Pál Gyulavári; Bálint Szokol; István Szabadkai; Diána Brauswetter; Péter Bánhegyi; Attila Varga; Péter Markó; Sándor Boros; Eszter Illyés; Csaba Szántai-Kis; Marcell Krekó; Zsófia Czudor; László Őrfi
Aurora kinases as regulators of cell division have become promising therapeutic targets recently. Here we report novel, low molecular weight benzothiophene-3-carboxamide derivatives designed and optimized for inhibiting Aurora kinases. The most effective compound 36 inhibits Aurora kinases in vitro in the nanomolar range and diminishes HCT 116 cell viability blocking cytokinesis and inducing apoptosis. According to western blot analysis, the lead molecule inhibits Aurora kinases equipotently to VX-680 (Tozasertib) and similarly synergizes with other targeted drugs.