Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Baltasar Beferull-Lozano is active.

Publication


Featured researches published by Baltasar Beferull-Lozano.


international conference on computer communications | 2004

On network correlated data gathering

Razvan Cristescu; Baltasar Beferull-Lozano; Martin Vetterli

We consider the problem of correlated data gathering by a network with a sink node and a tree communication structure, where the goal is to minimize the total transmission cost of transporting the information collected by the nodes, to the sink node. Two coding strategies are analyzed: a Slepian-Wolf model where optimal coding is complex and transmission optimization is simple, and a joint entropy coding model with explicit communication where coding is simple and transmission optimization is difficult. This problem requires a joint optimization of the rate allocation at the nodes and of the transmission structure. For the Slepian-Wolf setting, we derive a closed form solution and an efficient distributed approximation algorithm with a good performance. For the explicit communication case, we prove that building an optimal data gathering tree is NP-complete and we propose various distributed approximation algorithms.


IEEE Transactions on Image Processing | 2006

Directionlets: anisotropic multidirectional representation with separable filtering

Vladan Velisavljevic; Baltasar Beferull-Lozano; Martin Vetterli; Pier Luigi Dragotti

In spite of the success of the standard wavelet transform (WT) in image processing in recent years, the efficiency of its representation is limited by the spatial isotropy of its basis functions built in the horizontal and vertical directions. One-dimensional (1-D) discontinuities in images (edges and contours) that are very important elements in visual perception, intersect too many wavelet basis functions and lead to a nonsparse representation. To efficiently capture these anisotropic geometrical structures characterized by many more than the horizontal and vertical directions, a more complex multidirectional (M-DIR) and anisotropic transform is required. We present a new lattice-based perfect reconstruction and critically sampled anisotropic M-DIR WT. The transform retains the separable filtering and subsampling and the simplicity of computations and filter design from the standard two-dimensional WT, unlike in the case of some other directional transform constructions (e.g., curvelets, contourlets, or edgelets). The corresponding anisotropic basis functions (directionlets) have directional vanishing moments along any two directions with rational slopes. Furthermore, we show that this novel transform provides an efficient tool for nonlinear approximation of images, achieving the approximation power O(N/sup -1.55/), which, while slower than the optimal rate O(N/sup -2/), is much better than O(N/sup -1/) achieved with wavelets, but at similar complexity.


IEEE Transactions on Information Theory | 2005

Networked Slepian-Wolf: theory, algorithms, and scaling laws

Razvan Cristescu; Baltasar Beferull-Lozano; Martin Vetterli

Consider a set of correlated sources located at the nodes of a network, and a set of sinks that are the destinations for some of the sources. The minimization of cost functions which are the product of a function of the rate and a function of the path weight is considered, for both the data-gathering scenario, which is relevant in sensor networks, and general traffic matrices, relevant for general networks. The minimization is achieved by jointly optimizing a) the transmission structure, which is shown to consist in general of a superposition of trees, and b) the rate allocation across the source nodes, which is done by Slepian-Wolf coding. The overall minimization can be achieved in two concatenated steps. First, the optimal transmission structure is found, which in general amounts to finding a Steiner tree, and second, the optimal rate allocation is obtained by solving an optimization problem with cost weights determined by the given optimal transmission structure, and with linear constraints given by the Slepian-Wolf rate region. For the case of data gathering, the optimal transmission structure is fully characterized and a closed-form solution for the optimal rate allocation is provided. For the general case of an arbitrary traffic matrix, the problem of finding the optimal transmission structure is NP-complete. For large networks, in some simplified scenarios, the total costs associated with Slepian-Wolf coding and explicit communication (conditional encoding based on explicitly communicated side information) are compared. Finally, the design of decentralized algorithms for the optimal rate allocation is analyzed.


IEEE ACM Transactions on Networking | 2006

Network correlated data gathering with explicit communication: NP-completeness and algorithms

Razvan Cristescu; Baltasar Beferull-Lozano; Martin Vetterli; Roger Wattenhofer

We consider the problem of correlated data gathering by a network with a sink node and a tree-based communication structure, where the goal is to minimize the total transmission cost of transporting the information collected by the nodes, to the sink node. For source coding of correlated data, we consider a joint entropy-based coding model with explicit communication where coding is simple and the transmission structure optimization is difficult. We first formulate the optimization problem definition in the general case and then we study further a network setting where the entropy conditioning at nodes does not depend on the amount of side information, but only on its availability. We prove that even in this simple case, the optimization problem is NP-hard. We propose some efficient, scalable, and distributed heuristic approximation algorithms for solving this problem and show by numerical simulations that the total transmission cost can be significantly improved over direct transmission or the shortest path tree. We also present an approximation algorithm that provides a tree transmission structure with total cost within a constant factor from the optimal.


ACM Transactions on Sensor Networks | 2006

Power-efficient sensor placement and transmission structure for data gathering under distortion constraints

Deepak Ganesan; Răzvan Cristescu; Baltasar Beferull-Lozano

We consider the joint optimization of sensor placement and transmission structure for data gathering, where a given number of nodes need to be placed in a field such that the sensed data can be reconstructed at a sink within specified distortion bounds while minimizing the energy consumed for communication. We assume that the nodes use joint entropy coding based on explicit communication between sensor nodes, and consider both maximum and average distortion bounds. The optimization is complex since it involves an interplay between the spaces of possible transmission structures given radio reachability limitations, and feasible placements satisfying distortion bounds. We address this problem by first looking at the simplified problem of optimal placement in the one-dimensional case. An analytical solution is derived for the case when there is a simple aggregation scheme, and numerical results are provided for the cases when joint entropy encoding is used. We use the insight from our 1-D analysis to extend our results to the 2-D case, and show that our algorithm for two-dimensional placement and transmission structure provides significant power benefit over a commonly used combination of uniformly random placement and shortest path trees.


IEEE Transactions on Image Processing | 2006

Rotation-invariant texture retrieval with gaussianized steerable pyramids

George Tzagkarakis; Baltasar Beferull-Lozano; Panagiotis Tsakalides

This paper presents a novel rotation-invariant image retrieval scheme based on a transformation of the texture information via a steerable pyramid. First, we fit the distribution of the subband coefficients using a joint alpha-stable sub-Gaussian model to capture their non-Gaussian behavior. Then, we apply a normalization process in order to Gaussianize the coefficients. As a result, the feature extraction step consists of estimating the covariances between the normalized pyramid coefficients. The similarity between two distinct texture images is measured by minimizing a rotation-invariant version of the Kullback-Leibler Divergence between their corresponding multivariate Gaussian distributions, where the minimization is performed over a set of rotation angles


IEEE Transactions on Image Processing | 2007

Space-Frequency Quantization for Image Compression With Directionlets

Vladan Velisavljevic; Baltasar Beferull-Lozano; Martin Vetterli

The standard separable 2-D wavelet transform (WT) has recently achieved a great success in image processing because it provides a sparse representation of smooth images. However, it fails to efficiently capture 1-D discontinuities, like edges or contours. These features, being elongated and characterized by geometrical regularity along different directions, intersect and generate many large magnitude wavelet coefficients. Since contours are very important elements in the visual perception of images, to provide a good visual quality of compressed images, it is fundamental to preserve good reconstruction of these directional features. In our previous work, we proposed a construction of critically sampled perfect reconstruction transforms with directional vanishing moments imposed in the corresponding basis functions along different directions, called directionlets. In this paper, we show how to design and implement a novel efficient space-frequency quantization (SFQ) compression algorithm using directionlets. Our new compression method outperforms the standard SFQ in a rate-distortion sense, both in terms of mean-square error and visual quality, especially in the low-rate compression regime. We also show that our compression method, does not increase the order of computational complexity as compared to the standard SFQ algorithm.


information processing in sensor networks | 2004

Lattice sensor networks: capacity limits, optimal routing and robustness to failures

Guillermo Barrenechea; Baltasar Beferull-Lozano; Martin Vetterli

We study network capacity limits and optimal routing algorithms for regular sensor networks, namely, square and torus grid sensor networks, in both, the static case (no node failures) and the dynamic case (node failures). For static networks, we derive upper bounds on the network capacity and then we characterize and provide optimal routing algorithms whose rate per node is equal to this upper bound, thus, obtaining the exact analytical expression for the network capacity. For dynamic networks, the unreliability of the network is modeled in two ways: a Markovian node failure and an energy based node failure. Depending on the probability of node failure that is present in the network, we propose to use a particular combination of two routing algorithms, the first one being optimal when there are no node failures at all and the second one being appropriate when the probability of node failure is high. The combination of these two routing algorithms defines a family of randomized routing algorithms, each of them being suitable for a given probability of node failure.


IEEE Transactions on Information Theory | 2006

Lossy network correlated data gathering with high-resolution coding

Razvan Cristescu; Baltasar Beferull-Lozano

Sensor networks measuring correlated data are considered, where the task is to gather data from the network nodes to a sink. A specific scenario is addressed, where data at nodes are lossy coded with high-resolution, and the information measured by the nodes has to be reconstructed at the sink within both certain total and individual distortion bounds. The first problem considered is to find the optimal transmission structure and the rate-distortion allocations at the various spatially located nodes, such as to minimize the total power consumption cost of the network, by assuming fixed nodes positions. The optimal transmission structure is the shortest path tree and the problems of rate and distortion allocation separate in the high-resolution case, namely, first the distortion allocation is found as a function of the transmission structure, and second, for a given distortion allocation, the rate allocation is computed. The second problem addressed is the case when the node positions can be chosen, by finding the optimal node placement for two different targets of interest, namely total power minimization and network lifetime maximization. Finally, a node placement solution that provides a tradeoff between the two metrics is proposed.


international conference on wireless networks | 2005

Adaptive distributed algorithms for power-efficient data gathering in sensor networks

Jugoslava Acimovic; Baltasar Beferull-Lozano; Razvan Cristescu

In this work, we consider the problem of designing adaptive distributed processing algorithms in large sensor networks that are efficient in terms of minimizing the total power spent for gathering the spatially correlated data from the sensor nodes to a sink node. We take into account both the power spent for purposes of communication as well as the power spent for local computation. Our distributed algorithms are also matched to the nature of the correlated field, namely, for piecewise smooth signals, we provide two distributed multiresolution wavelet-based algorithms, while for correlated Gaussian fields, we use distributed prediction based processing. In both cases, we provide distributed algorithms that perform network division into groups of different sizes. The distribution of the group sizes within the network is the result of an optimal trade-off between the local communication inside each group needed to perform decorrelation, the communication needed to bring the processed data (coefficients) to the sink and the local computation cost, which grows as the network becomes larger. Our experimental results show clearly that important gains in power consumption can be obtained with respect to the case of not performing any distributed decorrelating processing.

Collaboration


Dive into the Baltasar Beferull-Lozano's collaboration.

Top Co-Authors

Avatar

Martin Vetterli

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Razvan Cristescu

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Ortega

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Linga Reddy Cenkeramaddi

Norwegian University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge