Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Baltazar A. Antonio is active.

Publication


Featured researches published by Baltazar A. Antonio.


Nature | 2002

The genome sequence and structure of rice chromosome 1

Takuji Sasaki; Takashi Matsumoto; Kimiko Yamamoto; Katsumi Sakata; Tomoya Baba; Yuichi Katayose; Jianzhong Wu; Yoshihito Niimura; Zhukuan Cheng; Yoshiaki Nagamura; Baltazar A. Antonio; Hiroyuki Kanamori; Satomi Hosokawa; Masatoshi Masukawa; Koji Arikawa; Yoshino Chiden; Mika Hayashi; Masako Okamoto; Tsuyu Ando; Hiroyoshi Aoki; Kohei Arita; Masao Hamada; Chizuko Harada; Saori Hijishita; Mikiko Honda; Yoko Ichikawa; Atsuko Idonuma; Masumi Iijima; Michiko Ikeda; Maiko Ikeno

The rice species Oryza sativa is considered to be a model plant because of its small genome size, extensive genetic map, relative ease of transformation and synteny with other cereal crops. Here we report the essentially complete sequence of chromosome 1, the longest chromosome in the rice genome. We summarize characteristics of the chromosome structure and the biological insight gained from the sequence. The analysis of 43.3 megabases (Mb) of non-overlapping sequence reveals 6,756 protein coding genes, of which 3,161 show homology to proteins of Arabidopsis thaliana, another model plant. About 30% (2,073) of the genes have been functionally categorized. Rice chromosome 1 is (G + C)-rich, especially in its coding regions, and is characterized by several gene families that are dispersed or arranged in tandem repeats. Comparison with a draft sequence indicates the importance of a high-quality finished sequence.


Nucleic Acids Research | 2006

The Rice Annotation Project Database (RAP-DB): hub for Oryza sativa ssp. japonica genome information.

Hajime Ohyanagi; Tsuyoshi Tanaka; Hiroaki Sakai; Yasumasa Shigemoto; Kaori Yamaguchi; Takuya Habara; Yasuyuki Fujii; Baltazar A. Antonio; Yoshiaki Nagamura; Tadashi Imanishi; Kazuho Ikeo; Takeshi Itoh; Takashi Gojobori; Takuji Sasaki

With the completion of the rice genome sequencing, a standardized annotation is necessary so that the information from the genome sequence can be fully utilized in understanding the biology of rice and other cereal crops. An annotation jamboree was held in Japan with the aim of annotating and manually curating all the genes in the rice genome. Here we present the Rice Annotation Project Database (RAP-DB), which has been developed to provide access to the annotation data. The RAP-DB has two different types of annotation viewers, BLAST and BLAT search, and other useful features. By connecting the annotations to other rice genomics data, such as full-length cDNAs and Tos17 mutant lines, the RAP-DB serves as a hub for rice genomics. All of the resources can be accessed through .


Nucleic Acids Research | 2002

RiceGAAS: an automated annotation system and database for rice genome sequence

Katsumi Sakata; Yoshiaki Nagamura; Hisataka Numa; Baltazar A. Antonio; Hideki Nagasaki; Atsuko Idonuma; Wakako Watanabe; Yuji Shimizu; Ikuo Horiuchi; Takashi Matsumoto; Takuji Sasaki; Kenichi Higo

An extensive effort of the International Rice Genome Sequencing Project (IRGSP) has resulted in rapid accumulation of genome sequence, and >137 Mb has already been made available to the public domain as of August 2001. This requires a high-throughput annotation scheme to extract biologically useful and timely information from the sequence data on a regular basis. A new automated annotation system and database called Rice Genome Automated Annotation System (RiceGAAS) has been developed to execute a reliable and up-to-date analysis of the genome sequence as well as to store and retrieve the results of annotation. The system has the following functional features: (i) collection of rice genome sequences from GenBank; (ii) execution of gene prediction and homology search programs; (iii) integration of results from various analyses and automatic interpretation of coding regions; (iv) re-execution of analysis, integration and automatic interpretation with the latest entries in reference databases; (v) integrated visualization of the stored data using web-based graphical view. RiceGAAS also has a data submission mechanism that allows public users to perform fully automated annotation of their own sequences. The system can be accessed at http://RiceGAAS.dna.affrc.go.jp/.


BMC Genomics | 2009

KAIKObase: An integrated silkworm genome database and data mining tool

Michihiko Shimomura; Hiroshi Minami; Yoshitaka Suetsugu; Hajime Ohyanagi; Chikatada Satoh; Baltazar A. Antonio; Yoshiaki Nagamura; Keiko Kadono-Okuda; Hideyuki Kajiwara; Hideki Sezutsu; Javaregowda Nagaraju; Marian R. Goldsmith; Qingyou Xia; Kimiko Yamamoto; Kazuei Mita

BackgroundThe silkworm, Bombyx mori, is one of the most economically important insects in many developing countries owing to its large-scale cultivation for silk production. With the development of genomic and biotechnological tools, B. mori has also become an important bioreactor for production of various recombinant proteins of biomedical interest. In 2004, two genome sequencing projects for B. mori were reported independently by Chinese and Japanese teams; however, the datasets were insufficient for building long genomic scaffolds which are essential for unambiguous annotation of the genome. Now, both the datasets have been merged and assembled through a joint collaboration between the two groups.DescriptionIntegration of the two data sets of silkworm whole-genome-shotgun sequencing by the Japanese and Chinese groups together with newly obtained fosmid- and BAC-end sequences produced the best continuity (~3.7 Mb in N50 scaffold size) among the sequenced insect genomes and provided a high degree of nucleotide coverage (88%) of all 28 chromosomes. In addition, a physical map of BAC contigs constructed by fingerprinting BAC clones and a SNP linkage map constructed using BAC-end sequences were available. In parallel, proteomic data from two-dimensional polyacrylamide gel electrophoresis in various tissues and developmental stages were compiled into a silkworm proteome database. Finally, a Bombyx trap database was constructed for documenting insertion positions and expression data of transposon insertion lines.ConclusionFor efficient usage of genome information for functional studies, genomic sequences, physical and genetic map information and EST data were compiled into KAIKObase, an integrated silkworm genome database which consists of 4 map viewers, a gene viewer, and sequence, keyword and position search systems to display results and data at the level of nucleotide sequence, gene, scaffold and chromosome. Integration of the silkworm proteome database and the Bombyx trap database with KAIKObase led to a high-grade, user-friendly, and comprehensive silkworm genome database which is now available from URL: http://sgp.dna.affrc.go.jp/KAIKObase/.


BMC Plant Biology | 2011

Field transcriptome revealed critical developmental and physiological transitions involved in the expression of growth potential in japonica rice

Yutaka Sato; Baltazar A. Antonio; Nobukazu Namiki; Ritsuko Motoyama; Kazuhiko Sugimoto; Hinako Takehisa; Hiroshi Minami; Kaori Kamatsuki; Makoto Kusaba; Hirohiko Hirochika; Yoshiaki Nagamura

BackgroundPlant growth depends on synergistic interactions between internal and external signals, and yield potential of crops is a manifestation of how these complex factors interact, particularly at critical stages of development. As an initial step towards developing a systems-level understanding of the biological processes underlying the expression of overall agronomic potential in cereal crops, a high-resolution transcriptome analysis of rice was conducted throughout life cycle of rice grown under natural field conditions.ResultsA wide range of gene expression profiles based on 48 organs and tissues at various developmental stages identified 731 organ/tissue specific genes as well as 215 growth stage-specific expressed genes universally in leaf blade, leaf sheath, and root. Continuous transcriptome profiling of leaf from transplanting until harvesting further elucidated the growth-stage specificity of gene expression and uncovered two major drastic changes in the leaf transcriptional program. The first major change occurred before the panicle differentiation, accompanied by the expression of RFT1, a putative florigen gene in long day conditions, and the downregulation of the precursors of two microRNAs. This transcriptome change was also associated with physiological alterations including phosphate-homeostasis state as evident from the behavior of several key regulators such as miR399. The second major transcriptome change occurred just after flowering, and based on analysis of sterile mutant lines, we further revealed that the formation of strong sink, i.e., a developing grain, is not the major cause but is rather a promoter of this change.ConclusionsOur study provides not only the genetic basis for functional genomics in rice but also new insight into understanding the critical physiological processes involved in flowering and seed development, that could lead to novel strategies for optimizing crop productivity.


Nucleic Acids Research | 2000

INE: a rice genome database with an integrated map view

Katsumi Sakata; Baltazar A. Antonio; Yoshiyuki Mukai; Hideki Nagasaki; Yasumichi Sakai; Kazuyoshi Makino; Takuji Sasaki

The Rice Genome Research Program (RGP) launched a large-scale rice genome sequencing in 1998 aimed at decoding all genetic information in rice. A new genome database called INE (INtegrated rice genome Explorer) has been developed in order to integrate all the genomic information that has been accumulated so far and to correlate these data with the genome sequence. A web interface based on Java applet provides a rapid viewing capability in the database. The first operational version of the database has been completed which includes a genetic map, a physical map using YAC (Yeast Artificial Chromosome) clones and PAC (P1-derived Artificial Chromosome) contigs. These maps are displayed graphically so that the positional relationships among the mapped markers on each chromosome can be easily resolved. INE incorporates the sequences and annotations of the PAC contig. A site on low quality information ensures that all submitted sequence data comply with the standard for accuracy. As a repository of rice genome sequence, INE will also serve as a common database of all sequence data obtained by collaborating members of the International Rice Genome Sequencing Project (IRGSP). The database can be accessed at http://www. dna.affrc.go.jp:82/giot/INE. html or its mirror site at http://www.staff.or.jp/giot/INE.html


Plant Journal | 2012

Genome‐wide transcriptome dissection of the rice root system: implications for developmental and physiological functions

Hinako Takehisa; Yutaka Sato; Motoko Igarashi; Tomomi Abiko; Baltazar A. Antonio; Kaori Kamatsuki; Hiroshi Minami; Nobukazu Namiki; Yoshiaki Inukai; Mikio Nakazono; Yoshiaki Nagamura

The root system is a crucial determinant of plant growth potential because of its important functions, e.g. uptake of water and nutrients, structural support and interaction with symbiotic organisms. Elucidating the molecular mechanism of root development and functions is therefore necessary for improving plant productivity, particularly for crop plants, including rice (Oryza sativa). As an initial step towards developing a comprehensive understanding of the root system, we performed a large-scale transcriptome analysis of the rice root via a combined laser microdissection and microarray approach. The crown root was divided into eight developmental stages along the longitudinal axis and three radial tissue types at two different developmental stages, namely: epidermis, exodermis and sclerenchyma; cortex; and endodermis, pericycle and stele. We analyzed a total of 38 microarray data and identified 22,297 genes corresponding to 17,010 loci that showed sufficient signal intensity as well as developmental- and tissue type-specific transcriptome signatures. Moreover, we clarified gene networks associated with root cap function and lateral root formation, and further revealed antagonistic and synergistic interactions of phytohormones such as auxin, cytokinin, brassinosteroids and ethylene, based on the expression pattern of genes related to phytohormone biosynthesis and signaling. Expression profiling of transporter genes defined not only major sites for uptake and transport of water and nutrients, but also distinct signatures of the radial transport system from the rhizosphere to the xylem vessel for each nutrient. All data can be accessed from our gene expression profile database, RiceXPro (http://ricexpro.dna.affrc.go.jp), thereby providing useful information for understanding the molecular mechanisms involved in root system development of crop plants.


Nature | 2009

Plant genomics: Sorghum in sequence

Takuji Sasaki; Baltazar A. Antonio

The drought tolerance of sorghum is just one of the features that make it a valuable crop plant. There is much for agronomists to learn from the complete genome sequence of this type of grass. The Sorghum bicolor genome sequence is published this week. Sorghum is a cereal grown widely as food, animal feed, fibre and fuel. Tolerant to hot, dry conditions, it is a staple for large populations in the West African Sahel region. Comparisons of the genome with those of maize and rice shed light on the evolution of grasses and of C4 photosynthesis, which is particularly efficient at assimilating carbon at high temperatures. In addition, protein coding genes and miRNAs that could contribute to sorghums drought tolerance may also be found. Sorghum yield improvement has lagged behind that of other crops and the availability of the genome sequence could provide a vital boost to work on its improvement.


Plant Molecular Biology | 1997

Rice molecular genetic map using RFLPs and its applications

Yoshiaki Nagamura; Baltazar A. Antonio; Takuji Sasaki

In the past decade, notable progress has been made in rice molecular genetic mapping using genomic or cDNA clones. A total of over 3000 DNA markers, mainly with RFLPs, have been mapped on the rice genome. In addition, many studies related to tagging of genes of interest, gene isolation by map-based cloning and comparative mapping between cereal genomes have advanced along with the development of a high-density molecular genetic map. Thus rice is considered a pivotal plant among cereal crops and, in addition to Arabidopsis, is a model plant in genome analysis. In this article, the current status of the construction of rice molecular genetic maps and their applications are reviewed.


Plant and Cell Physiology | 2013

Identification of transcription factors involved in rice secondary cell wall formation.

Ko Hirano; Mari Kondo; Koichiro Aya; Akio Miyao; Yutaka Sato; Baltazar A. Antonio; Nobukazu Namiki; Yoshiaki Nagamura; Makoto Matsuoka

Using co-expression network analysis, we identified 123 transcription factors (TFs) as candidate secondary cell wall regulators in rice. To validate whether these TFs are associated with secondary cell wall formation, six TF genes belonging to the MYB, NAC or homeodomain-containing TF families were overexpressed or downregulated in rice. With the exception of OsMYB58/63-RNAi plants, all transgenic plants showed phenotypes possibly related to secondary cell wall alteration, such as dwarfism, narrow and dark green leaves, and also altered rice cinnamyl alcohol dehydrogenase 2 (OsCAD2) gene expression and lignin content. These results suggest that many of the 123 candidate secondary cell wall-regulating TFs are likely to function in secondary cell wall formation in rice. Further analyses were performed for the OsMYB55/61 and OsBLH6 TFs, the former being a TF in which the Arabidopsis ortholog is known to participate in lignin biosynthesis (AtMYB61) and the latter being one for which no previous involvement in cell wall formation has been reported even in Arabidopsis (BLH6). OsMYB55/61 and OsBLH6-GFP fusion proteins localized to the nucleus of onion epidermal cells. Moreover, expression of a reporter gene driven by the OsCAD2 promoter was enhanced in rice calli when OsMYB55/61 or OsBLH6 was transiently expressed, demonstrating that they function in secondary cell wall formation. These results show the validity of identifying potential secondary cell wall TFs in rice by the use of rice co-expression network analysis.

Collaboration


Dive into the Baltazar A. Antonio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takuji Sasaki

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katsumi Sakata

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takuji Sasaki

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianzhong Wu

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge