Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Balu Kamaraj is active.

Publication


Featured researches published by Balu Kamaraj.


BioMed Research International | 2014

Mutational Analysis of Oculocutaneous Albinism: A Compact Review

Balu Kamaraj; Rituraj Purohit

Oculocutaneous albinism (OCA) is an autosomal recessive disorder caused by either complete lack of or a reduction of melanin biosynthesis in the melanocytes. The OCA1A is the most severe type with a complete lack of melanin production throughout life, while the milder forms OCA1B, OCA2, OCA3, and OCA4 show some pigment accumulation over time. Mutations in TYR, OCA2, TYRP1, and SLC45A2 are mainly responsible for causing oculocutaneous albinism. Recently, two new genes SLC24A5 and C10orf11 are identified that are responsible to cause OCA6 and OCA7, respectively. Also a locus has been mapped to the human chromosome 4q24 region which is responsible for genetic cause of OCA5. In this paper, we summarized the clinical and molecular features of OCA genes. Further, we reviewed the screening of pathological mutations of OCA genes and its molecular mechanism of the protein upon mutation by in silico approach. We also reviewed TYR (T373K, N371Y, M370T, and P313R), OCA2 (R305W), TYRP1 (R326H and R356Q) mutations and their structural consequences at molecular level. It is observed that the pathological genetic mutations and their structural and functional significance of OCA genes will aid in development of personalized medicine for albinism patients.


Cell Biochemistry and Biophysics | 2014

Computational screening of disease-associated mutations in OCA2 gene.

Balu Kamaraj; Rituraj Purohit

Oculocutaneous albinism type 2 (OCA2), caused by mutations of OCA2 gene, is an autosomal recessive disorder characterized by reduced biosynthesis of melanin pigment in the skin, hair, and eyes. The OCA2 gene encodes instructions for making a protein called the P protein. This protein plays a crucial role in melanosome biogenesis, and controls the eumelanin content in melanocytes in part via the processing and trafficking of tyrosinase which is the rate-limiting enzyme in melanin synthesis. In this study we analyzed the pathogenic effect of 95 non-synonymous single nucleotide polymorphisms reported in OCA2 gene using computational methods. We found R305W mutation as most deleterious and disease associated using SIFT, PolyPhen, PANTHER, PhD-SNP, Pmut, and MutPred tools. To understand the atomic arrangement in 3D space, the native and mutant (R305W) structures were modeled. Molecular dynamics simulation was conducted to observe the structural significance of computationally prioritized disease-associated mutation (R305W). Root-mean-square deviation, root-mean-square fluctuation, radius of gyration, solvent accessibility surface area, hydrogen bond (NH bond), trace of covariance matrix, eigenvector projection analysis, and density analysis results showed prominent loss of stability and rise in mutant flexibility values in 3D space. This study presents a well designed computational methodology to examine the albinism-associated SNPs.


Journal of Biomolecular Structure & Dynamics | 2015

Mutational analysis of FUS gene and its structural and functional role in amyotrophic lateral sclerosis 6

Balu Kamaraj; Vidya Rajendran; Rao Sethumadhavan; Chundi Vinay Kumar; Rituraj Purohit

Amyotrophic lateral sclerosis 6 (ALS6) is an autosomal recessive disorder caused by heterozygous mutation in the Fused in Sarcoma (FUS) gene. ALS6 is a neurodegenerative disorder, which affects the upper and lower motor neurons in the brain and spinal cord, resulting in fatal paralysis. ALS6 is caused by the genetic mutation in the proline/tyrosine-nuclear localization signals of the Fused in sarcoma Protein (FUS). FUS gene also known as TLS (Translocated in liposarcoma), which encodes a protein called RNA-binding protein-Fus (FUS), has a molecular weight of 75 kDa. In this analysis, we applied computational approach to filter the most deleterious and neurodegenerative disease of ALS6-associated mutation on FUS protein. We found H517Q as most deleterious and disease associated using PolyPhen 2.0, I-Mutant 3.0, SIFT, SNPs&GO, PhD-SNP, Pmut, and Mutpred tools. Molecular dynamics simulation (MDS) approach was conducted to investigate conformational changes in the mutant protein structure with respect to its native conformation. MDS results showed the flexibility loss in mutant (H517Q) FUS protein. Due to mutation, FUS protein became more rigid in nature and might alter the structural and functional behavior of protein and play a major role in inducing ALS6. The results obtained from this investigation would help in the field of pharmacogenomics to develop a potent drug target against FUS-associated neurodegenerative diseases.


BioMed Research International | 2013

In Silico Screening and Molecular Dynamics Simulation of Disease-Associated nsSNP in TYRP1 Gene and Its Structural Consequences in OCA3

Balu Kamaraj; Rituraj Purohit

Oculocutaneous albinism type III (OCA3), caused by mutations of TYRP1 gene, is an autosomal recessive disorder characterized by reduced biosynthesis of melanin pigment in the hair, skin, and eyes. The TYRP1 gene encodes a protein called tyrosinase-related protein-1 (Tyrp1). Tyrp1 is involved in maintaining the stability of tyrosinase protein and modulating its catalytic activity in eumelanin synthesis. Tyrp1 is also involved in maintenance of melanosome structure and affects melanocyte proliferation and cell death. In this work we implemented computational analysis to filter the most probable mutation that might be associated with OCA3. We found R326H and R356Q as most deleterious and disease associated by using PolyPhen 2.0, SIFT, PANTHER, I-mutant 3.0, PhD-SNP, SNP&GO, Pmut, and Mutpred tools. To understand the atomic arrangement in 3D space, the native and mutant (R326H and R356Q) structures were modelled. Finally the structural analyses of native and mutant Tyrp1 proteins were investigated using molecular dynamics simulation (MDS) approach. MDS results showed more flexibility in native Tyrp1 structure. Due to mutation in Tyrp1 protein, it became more rigid and might disturb the structural conformation and catalytic function of the structure and might also play a significant role in inducing OCA3. The results obtained from this study would facilitate wet-lab researches to develop a potent drug therapies against OCA3.


Journal of Molecular Modeling | 2013

In-silico screening of cancer associated mutation on PLK1 protein and its structural consequences

Balu Kamaraj; Vidya Rajendran; Rao Sethumadhavan; Rituraj Purohit

AbstractThe Polo-like kinases (Plks) are a conserved subfamily of serine-threonine protein kinases that have significant roles in cell proliferation. The serine/threonine protein kinases or polo-like kinase 1 (PLK1) exist in centrosome during interphase and is an important regulatory enzyme in cell cycle progression during M phase. Mutations in mammalian PLK1 were found to be over expressed in various human cancers and it is disrupting the binding ability of polo box domain with target peptide. In this analysis we implemented a computational approach to filter the most deleterious and cancer associated mutation on PLK1 protein. We found W414F as the most deleterious and cancer associated by Polyphen 2.0, SIFT, I-mutant 3.0, PANTHER, PhD-SNP, SNP&GO, Mutpred and Dr Cancer tools. Molecular docking and molecular dynamics simulation (MDS) approach was used to investigate the structural and functional behavior of PLK1 protein upon mutation. MDS and docking results showed stability loss in mutant PLK1 protein. Due to mutation, PLK1 protein became more flexible and alters the dynamic property of protein which might affect the interaction with target peptide and leads to cell proliferation. Our study provided a well designed computational methodology to examine the cancer associated nsSNPs and their molecular mechanism. It further helps scientists to develop a drug therapy against PLK1 cancer-associated diseases. FigureFlow chart of in-silico screening of cancer associated mutation on PLK1 protein and its structural consequences studies.


Cell Biochemistry and Biophysics | 2014

In Silico Analysis of miRNA-Mediated Gene Regulation in OCA and OA Genes

Balu Kamaraj; Chandrasekhar Gopalakrishnan; Rituraj Purohit

Albinism is an autosomal recessive genetic disorder due to low secretion of melanin. The oculocutaneous albinism (OCA) and ocular albinism (OA) genes are responsible for melanin production and also act as a potential targets for miRNAs. The role of miRNA is to inhibit the protein synthesis partially or completely by binding with the 3′UTR of the mRNA thus regulating gene expression. In this analysis, we predicted the genetic variation that occurred in 3′UTR of the transcript which can be a reason for low melanin production thus causing albinism. The single nucleotide polymorphisms (SNPs) in 3′UTR cause more new binding sites for miRNA which binds with mRNA which leads to inhibit the translation process either partially or completely. The SNPs in the mRNA of OCA and OA genes can create new binding sites for miRNA which may control the gene expression and lead to hypopigmentation. We have developed a computational procedure to determine the SNPs in the 3′UTR region of mRNA of OCA (TYR, OCA2, TYRP1 and SLC45A2) and OA (GPR143) genes which will be a potential cause for albinism. We identified 37 SNPs in five genes that are predicted to create 87 new binding sites on mRNA, which may lead to abrogation of the translation process. Expression analysis confirms that these genes are highly expressed in skin and eye regions. It is well supported by enrichment analysis that these genes are mainly involved in eye pigmentation and melanin biosynthesis process. The network analysis also shows how the genes are interacting and expressing in a complex network. This insight provides clue to wet-lab researches to understand the expression pattern of OCA and OA genes and binding phenomenon of mRNA and miRNA upon mutation, which is responsible for inhibition of translation process at genomic levels.


The Scientific World Journal | 2014

Single Nucleotide Polymorphisms in MicroRNA Binding Sites: Implications in Colorectal Cancer

Panchalee Bhaumik; Chandrasekhar Gopalakrishnan; Balu Kamaraj; Rituraj Purohit

Cancer is a complex genetic disorder, characterised by uncontrolled cell proliferation and caused by altered expression of oncogenes and tumour suppressor genes. When cell proliferation pertains to colon, it is called colorectal cancer. Most of colorectal cancer causing genes are potential targets for the miRNA (microRNA) that bind to 3′UTR (untranslated regions) of mRNA and inhibit translation. Mutations occurring in miRNA binding regions can alter the miRNA, mRNA combination, and can alter gene expression drastically. We hypothesized that 3′UTR mutation in miRNA binding site could alter the miRNA, mRNA interaction, thereby altering gene expression. Altered gene expression activity could promote tumorigenesis in colon. Therefore, we formulated a systematic in silico procedure that integrates data from various databases, followed rigorous selection criteria, and identified mutations that might alter the expression levels of cancer causing genes. Further we performed expression analysis to shed light on the potential tissues that might be affected by mutation, enrichment analysis to find the metabolic functions of the gene, and network analysis to highlight the important interactions of cancer causing genes with other genes to provide insight that complex network will be disturbed upon mutation. We provide in silico evidence for the effect of these mutations in colorectal cancer.


Journal of Plant Interactions | 2013

In-silico analysis of Betaine Aldehyde Dehydrogenase2 of Oryza sativa and significant mutations responsible for fragrance

Balu Kamaraj; Rituraj Purohit

Abstract Fragrance in rice plays an important characteristic feature in determining the quality of rice. 2-Acetyl-1-pyrroline (2AP) compound is responsible for the fragrance in rice. Betaine-aldehyde-dehydrogenase2 (BADH2) inhibits the biosynthesis of 2AP in nonfragrant rice by converting γ-aminobutyraldehyde (GAB-ald) to γ-aminobutyric acid (GABA). In fragrant rice, truncated BADH2 results in the accumulation of GAB-ald which then leads to the formation of 2AP. Biochemical and enzymatic studies state that the mutants of BADH2 exhibit lower enzymatic activity toward GAB-ald. In this study, we adopted an in-silico approach to explore the interaction behavior of model structures of native and mutant BADH2 enzyme and a substrate GAB-ald, which is responsible for fragrance in rice. Quantitative structural evaluations and salt bridge analysis were performed to identify the stability of BADH2 enzyme upon mutation. Our investigation states that the mutant forms of BADH2 have subsidiary/decisive catalytic efficiency toward GAB-ald, which was also endorsed with earlier in vivo experimental studies. Due to this, mutant forms of BADH2 were not able to interact with its substrate molecule GAB-ald; thus this phenomenon accumulates GAB-ald, and it leads to the formation of 2AP, which is responsible for the fragrance in the mutant variety. Based on the quantitative and docking analyses, we found that the BADH2 N162A was considered to be the most fragrant form. We list here the order of fragrance in rice as BADH2


Cell Biochemistry and Biophysics | 2014

Mutations in microRNA Binding Sites of CEP Genes Involved in Cancer

Chandrasekhar Gopalakrishnan; Balu Kamaraj; Rituraj Purohit

The CEP genes play a pivotal role in the replication of the cell. CEP family proteins form the major constituents of the centrosome and play a prominent role in centriole biogenesis and in cell replication. Alteration in CEP genes will result in disruption of cell cycle that may in turn cause cancer. In our study, we found that 16 of the CEP genes are a potential target to miRNA that binds to complementary sequences in 3′untranslated regions (UTR) of mRNA and stop them from translation. Single nucleotide polymorphisms (SNPs) occurring naturally in such miRNA binding site can alter the miRNA: mRNA interaction and can significantly alter gene expression. We developed a systematic computational pipeline that integrates data from well-established databases, followed stringent selection criteria and identified a panel of 44 high-confidence SNPs that may impair miRNA target sites in the 3′UTR of 16 genes. Further we performed expression analysis to shed light on the potential tissues that might be affected by mutation, enrichment analysis to find the metabolic functions of the gene, and network analysis to highlight the important interactions of CEP genes with other genes to provide insight that complex network will be disturbed upon mutation. In this study, we explored and prioritised the SNPs in CEP gene which could act as a potential target in centrosome-associated human disease. Our analysis would provide a thoughtful insight to wet lab researches to understand the expression pattern of CEP genes and binding phenomenon of mRNA and miRNA upon mutation, which is responsible for inhibition of translation process at genomic levels.


PLOS ONE | 2013

Evolutionary Reconstruction and Population Genetics Analysis of Aurora Kinases

Balu Kamaraj; Ambuj Kumar; Rituraj Purohit

Background Aurora kinases belong to the highly conserved kinase family and play a vital role in cell cycle regulation. The structure and function of these kinases are inter-related and sometimes they also act as substitutes in case of knockdown of other aurora kinases. Method In this work we carried out the evolutionary reconstruction and population genetic studies of aurora kinase proteins. Substitution saturation test, CAI (Codon adaptation index), gene expression and RSCU (Relative synonymous codon usage) values were computed for all the three aurora kinases. Linear regression method was used to check the dependency of gene expression on their CAI values. Results The results suggested that aurora-B and aurora-C has shown convergence in their evolutionary pathway. Moreover, the aurora-A I57V mutation showed high penetrance in human population and exist at very high frequency (84.4%) when compared to the native residue (15.6%). The mutation showed notable range of functional gain and seemed to be promising for the evolution of aurora-A function. Mutant allele might also become a challenging prospect for understanding the pattern of evolution followed by cell cycle kinases. Conclusion The overall result suggested that the aurora-A is currently under the evolutionary transition and to determine the functional significance of the mutation further investigation are required.

Collaboration


Dive into the Balu Kamaraj's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge