Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bandana Chakravarti is active.

Publication


Featured researches published by Bandana Chakravarti.


Advances in Experimental Medicine and Biology | 2012

Signaling Through the Extracellular Calcium-Sensing Receptor (CaSR)

Bandana Chakravarti; Naibedya Chattopadhyay; Edward M. Brown

The extracellular calcium ([Formula: see text])-sensing receptor (CaSR) was the first GPCR identified whose principal physiological ligand is an ion, namely extracellular Ca(2+). It maintains the near constancy of [Formula: see text] that complex organisms require to ensure normal cellular function. A wealth of information has accumulated over the past two decades about the CaSRs structure and function, its role in diseases and CaSR-based therapeutics. This review briefly describes the CaSR and key features of its structure and function, then discusses the extracellular signals modulating its activity, provides an overview of the intracellular signaling pathways that it controls, and, finally, briefly describes CaSR signaling both in tissues participating in [Formula: see text] homeostasis as well as those that do not. Factors controlling CaSR signaling include various factors affecting the expression of the CaSR gene as well as modulation of its trafficking to and from the cell surface. The dimeric cell surface CaSR, in turn, links to various heterotrimeric and small molecular weight G proteins to regulate intracellular second messengers, lipid kinases, various protein kinases, and transcription factors that are part of the machinery enabling the receptor to modulate the functions of the wide variety of cells in which it is expressed. CaSR signaling is impacted by its interactions with several binding partners in addition to signaling elements per se (i.e., G proteins), including filamin-A and caveolin-1. These latter two proteins act as scaffolds that bind signaling components and other key cellular elements (e.g., the cytoskeleton). Thus CaSR signaling likely does not take place randomly throughout the cell, but is compartmentalized and organized so as to facilitate the interaction of the receptor with its various signaling pathways.


Bioorganic & Medicinal Chemistry Letters | 2010

Anti-tumor activity of a new series of benzoxazepine derivatives in breast cancer

Krishnananda Samanta; Bandana Chakravarti; Jitendra Kumar Mishra; Shailendra Kumar Dhar Dwivedi; Lakshma Vadithe Nayak; Preeti Choudhry; Hemant Kumar Bid; Rituraj Konwar; Naibedya Chattopadhyay; Gautam Panda

A series of new benzoxazepine derivatives substituted with different alkoxy and aryloxy group were synthesized comprising synthetic steps of Mitsunobu reaction, lithium aluminum hydride (LAH) reduction, followed by debenzylation and finally intramolecular Mitsunobu cyclization. The new benzoxazepines specifically inhibited growth of breast cancer cell lines, MCF-7 and MDA-MB-231, but lack cytotoxicity to normal HEK-293 cells. The cell growth inhibition induced by the active compounds was due to cell cycle arrest at G(0)/G(1) phase. The active compound could cause significant reduction in tumor volume of MCF-7 xenograft tumor in nude mice model and their activity was comparable to that of tamoxifen citrate at 16mgkg(-1) dose at 30days of treatment. The identified most active compounds of the series have specific advantages as anti-cancer agent in breast cancer than tamoxifen.


Bioorganic & Medicinal Chemistry | 2009

Synthesis and biological evaluation of 3,4,6-triaryl-2-pyranones as a potential new class of anti-breast cancer agents.

Ravi Shankar; Bandana Chakravarti; Uma Sharan Singh; Mohd. Imran Ansari; Shreekant Deshpande; Shailendra Kumar Dhar Dwivedi; Hemant Kumar Bid; Rituraj Konwar; Geetika Kharkwal; Vishal Chandra; Anila Dwivedi; Kanchan Hajela

A series of 3,4,6-triaryl-2-pyranones, new class of anti-breast cancer agents, have been synthesized as a structural variants of cyclic triphenylethylenes by replacing the fused benzene ring with pendant phenyl ring to mimic the phenolic A ring of estradiol. Nine of these newly synthesized pyranones exhibited significant anti-proliferative activity in both ER+ve and ER-ve breast cancer cell lines. Four active non-cytotoxic compounds 5c, 5d, 5g and 5h showed specific and selective cytotoxicity and two compounds 5d and 5h induced significant DNA fragmentation in both MCF-7 and MDA-MB-231 cell lines. Based on RBA studies, the molecules probably act in an ER-independent mechanism. The involved pathway was observed as caspase-dependant apoptosis in MCF-7 cells. However, the particular caspases involved and the possible cellular target through which this series of compounds mediate cell death are not known.


Journal of Nutritional Biochemistry | 2012

Medicarpin, a legume phytoalexin, stimulates osteoblast differentiation and promotes peak bone mass achievement in rats: evidence for estrogen receptor β-mediated osteogenic action of medicarpin.

Biju Bhargavan; Divya Singh; Abnish K. Gautam; Jay Sharan Mishra; Amit Kumar; Atul Goel; Manish Dixit; Rashmi Pandey; Lakshmi Manickavasagam; Shailendra Kumar Dhar Dwivedi; Bandana Chakravarti; Girish Kumar Jain; Rakesh Maurya; Arun Kumar Trivedi; Naibedya Chattopadhyay; Sabyasachi Sanyal

Dietary isoflavones including genistein and daidzein have been shown to have favorable bone conserving effects during estrogen deficiency in experimental animals and humans. We have evaluated osteogenic effect of medicarpin (Med); a phytoalexin that is structurally related to isoflavones and is found in dietary legumes. Med stimulated osteoblast differentiation and mineralization at as low as 10⁻¹⁰ M. Studies with signal transduction inhibitors demonstrated involvement of a p38 mitogen activated protein kinase-ER-bone morphogenic protein-2 pathway in mediating Med action in osteoblasts. Co-activator interaction studies demonstrated that Med acted as an estrogen receptor (ER) agonist; however, in contrast to 17β-estradiol, Med had no uterine estrogenicity and blocked proliferation of MCF-7 cells. Med increased protein levels of ERβ in osteoblasts. Selective knockdown of ERα and ERβ in osteoblasts established that osteogenic action of Med is ERβ-dependent. Female Sprague-Dawley (weaning) rats were administered Med at 1.0- and 10.0 mg.kg⁻¹ doses by gavage for 30 days along with vehicle control. Med treatment resulted in increased formation of osteoporgenitor cells in the bone marrow and osteoid formation (mineralization surface, mineral apposition/bone formation rates) compared with vehicle group. In addition, Med increased cortical thickness and bone biomechanical strength. In pharmacokinetic studies, Med exhibited oral bioavailability of 22.34% and did not produce equol. Together, our results demonstrate Med stimulates osteoblast differentiation likely via ERβ, promotes achievement of peak bone mass, and is devoid of uterine estrogenicity. In addition, given its excellent oral bioavailability, Med can be potential osteogenic agent.


Endocrine | 2009

Calcium-sensing receptor in cancer: good cop or bad cop?

Bandana Chakravarti; Shailendra Kumar Dhar Dwivedi; Ambrish Mithal; Naibedya Chattopadhyay

The extracellular calcium-sensing receptor (CaR) is a versatile ‘sensor’ for di- and polycationic molecules in the body. CaR plays a key role in the defense against hypercalcemia by “sensing” extracellular calcium levels in the parathyroid and kidney, the key organs maintaining systemic calcium homeostasis. Although mutation of CaR gene has so far not been associated with any malignancy, aberrant functions of CaR have implications in malignant progression. One situation is loss of CaR expression, resulting in loss of growth suppressing effects of elevated extracellular Ca2+ by CaR, reported in parathyroid adenoma and in colon carcinoma. Another situation is activation of CaR, resulting in increased production of parathyroid hormone-related peptide (PTHrP), a primary causal factor in hypercalcemia of malignancy and a contributor to metastatic processes involving bone. CaR signaling and effects have been studied in several cancers including ovarian cancers, gastrinomas, and gliomas in addition to comparatively detailed studies in breast, prostate, and colon cancers. Studies on H-500 rat Leydig cells, a xenotransplantable model of humoral hypercalcemia of malignancy has shed much light on the mechanisms of CaR-induced cancer cell growth and survival. Pharmacological agonists and antagonists of CaR hold therapeutic promise depending on whether activation of CaR is required such as in case of colon cancer or inactivating the receptor is required as in the case of breast- and prostate tumors.


European Journal of Pharmacology | 2011

A novel flavonoid isolated from the steam-bark of Ulmus wallichiana planchon stimulates osteoblast function and inhibits osteoclast and adipocyte differentiation.

Gaurav Swarnkar; Kunal Sharan; Jawed A. Siddiqui; Bandana Chakravarti; Preeti Rawat; Manmeet Kumar; Kamal Ram Arya; Rakesh Maurya; Naibedya Chattopadhyay

(2S,3S)-Aromadendrin-6-C-β-d-glucopyranoside (AG) is a novel flavonol isolated from the extract of Ulmus wallichiana (Himalayan Elm). Extract of U. wallichiana is used as a traditional medicine for rapid fracture repair in India. We characterized the mechanism of action of AG in mouse bone cells by investigating its effect on the precursors of osteoblasts, osteoclasts and adipocytes. At nanomolar concentrations, AG increased differentiation of preosteoblasts obtained from neonatal mouse calvaria. The gene expression of osteogenic markers, including runt-related transcription factor 2 (Runx-2), bone morphogenetic protein-2 (BMP-2), type I collagen and osteocalcin were elevated in the preosteoblasts. The extracellular matrix mineralization was higher in preosteoblast and bone marrow cells when AG was present in the medium. Furthermore, AG protected the differentiated osteoblasts from serum deprivation-induced apoptosis, and increased the expression of the anti-osteoclastogenic cytokine, osteoprotegerin. It inhibited osteoclast differentiation of bone marrow precursor cells to osteoclasts in the presence of receptor activator of nuclear factor kappa-B ligand (RANKL) and monocyte/macrophage-colony stimulating factor (M-CSF). Additionally, in 3T3-L1 preadipocytes, AG decreased the expression of genes involved in adipogenesis, including peroxisome proliferator-activated receptor gamma (PPARγ), sterol regulatory element binding protein (SREBP) and CCAAT/enhancer-binding protein alpha (CEBP/α), and induced apoptosis of differentiated adipocytes. Induction of adipogenic differentiation was also inhibited in the presence of AG. AG exhibited no estrogenic/antiestrogenic effect. Together, our data show that AG has potent osteogenic, anti-osteoclastogenic and anti-adipogenic effects, which may translate to a better skeletal outcome in postmenopausal osteoporosis.


Current Cancer Drug Targets | 2015

Phytochemicals for Breast Cancer Therapy: Current Status and Future Implications

Jawed A. Siddiqui; Aru Singh; Megha Chagtoo; Nidhi Singh; Madan M. Godbole; Bandana Chakravarti

Breast cancer is one of the most common malignancies among women, representing nearly 30% of newly diagnosed cancers every year. Till date, various therapeutic interventions, including surgery, chemotherapy, hormonal therapy, and radiotherapy are available and are known to cause a significant decline in the overall mortality rate. However, therapeutic resistance, recurrence and lack of treatment in metastasis are the major challenges that need to be addressed. Increasing evidence suggests the presence of cancer stem cells (CSCs) in heterogeneous population of breast tumors capable of selfrenewal and differentiation and is considered to be responsible for drug resistance and recurrence. Therefore, compound that can target both differentiated cancer cells, as well as CSCs, may provide a better treatment strategy. Due to safe nature of dietary agents and health products, investigators are introducing them into clinical trials in place of chemotherapeutic agents.This current review focuses on phytochemicals, mainly flavonoids that are in use for breast cancer therapy in preclinical phase. As phytochemicals have several advantages in breast cancer and cancer stem cells, new synthetic series for breast cancer therapy from analogues of most potent natural molecule can be developed via rational drug design approach.


Bioorganic & Medicinal Chemistry | 2011

Design and synthesis of 1,3-biarylsulfanyl derivatives as new anti-breast cancer agents

Atul Kumar; Vishwa Deepak Tripathi; Promod Kumar; Lalit Prakash Gupta; Akanksha; Ritu Trivedi; Hemant Kumar Bid; V.L. Nayak; Jawed A. Siddiqui; Bandana Chakravarti; Ruchi Saxena; Anila Dwivedi; M.I. Siddiquee; U. Siddiqui; Rituraj Konwar; Naibedya Chattopadhyay

A new series of 1,3-biarylsulfanyl derivatives (homodibenzyl core motif) have been designed and synthesized as new estrogen receptor ligands by chopping benzothiophene core of raloxifene to engender seco-raloxifene scaffold. All the synthesized compounds were screened for anti-proliferative, anti-osteoporotic, and anti-implantation activity. Compounds (35, 36) having basic amino anti-estrogenic side chain were exhibiting potential anti-proliferative activity in MCF-7, MDA-MB-231 and ishikawa cell lines. Some of the synthesized compounds having homodibenzyl motif (5, 8, 10) have shown moderate anti-osteoporotic activity.


Journal of Medicinal Chemistry | 2014

Thioaryl naphthylmethanone oxime ether analogs as novel anticancer agents

Bandana Chakravarti; Tahseen Akhtar; Byanju Rai; Manisha Yadav; Jawed A. Siddiqui; Shailendra Kumar Dhar Dwivedi; Ravi Thakur; Anup Kumar Singh; Abhishek Singh; Harish Kumar; Kainat Khan; Subhashis Pal; Srikanta Kumar Rath; Jawahar Lal; Rituraj Konwar; Arun Kumar Trivedi; Dipak Datta; Durga Prasad Mishra; Madan M. Godbole; Sabyasachi Sanyal; Naibedya Chattopadhyay; Atul Kumar

Employing a rational design of thioaryl naphthylmethanone oxime ether analogs containing functional properties of various anticancer drugs, a series of compounds were identified that displayed potent cytotoxicity toward various cancer cells, out of which 4-(methylthio)phenyl)(naphthalen-1-yl)methanone O-2-(diethylamino)ethyl oxime (MND) exhibited the best safety profile. MND induced apoptosis, inhibited migration and invasion, strongly inhibited cancer stem cell population on a par with salinomycin, and demonstrated orally potent tumor regression in mouse MCF-7 xenografts. Mechanistic studies revealed that MND strongly abrogated EGF-induced proliferation, migration, and tyrosine kinase (TK) signaling in breast cancer cells. However, MND failed to directly inhibit EGFR or other related receptor TKs in a cell-free system. Systematic investigation of a putative target upstream of EGFR revealed that the biological effects of MND could be abrogated by pertussis toxin. Together, MND represents a new nonquinazoline potential drug candidate having promising antiproliferative activity with good safety index.


Journal of Biological Chemistry | 2015

Insulin Regulates Nitric Oxide Production in the Kidney Collecting Duct Cells

Gaurav Pandey; Ekta Makhija; Nelson George; Bandana Chakravarti; Madan M. Godbole; Carolyn M. Ecelbarger; Swasti Tiwari

Background: Renal nitric oxide (NO) production is important for long-term blood pressure regulation. Results: Insulin stimulates NO production via the insulin receptor (IR)/PI3K/endothelial NO synthase-dependent pathway in inner medullary collecting duct (IMCD) cells, the largest source of NO in the kidney. Conclusion: IR is crucial for insulin-induced NO generation in IMCD. Significance: This study clarifies the implication of reduced IR in insulin-resistance associated hypertension. The kidney is an important organ for arterial blood pressure (BP) maintenance. Reduced NO generation in the kidney is associated with hypertension in insulin resistance. NO is a critical regulator of vascular tone; however, whether insulin regulates NO production in the renal inner medullary collecting duct (IMCD), the segment with the greatest enzymatic activity for NO production in kidney, is not clear. Using an NO-sensitive 4-amino-5-methylamino-2′,7′-difluorofluorescein (DAF-FM) fluorescent dye, we found that insulin increased NO production in mouse IMCD cells (mIMCD) in a time- and dose-dependent manner. A concomitant dose-dependent increase in the NO metabolite (NOx) was also observed in the medium from insulin-stimulated cells. NO production peaked in mIMCD cells at a dose of 100 nm insulin with simultaneously increased NOx levels in the medium. At this dose, insulin significantly increased p-eNOSSer1177 levels in mIMCD cells. Pretreatment of cells with a PI 3-kinase inhibitor or insulin receptor silencing with RNA interference abolished these effects of insulin, whereas insulin-like growth factor-1 receptor (IGF-1R) silencing had no effect. We also showed that chronic insulin infusion to normal C57BL/6J mice resulted in increased endothelial NOS (eNOS) protein levels and NO production in the inner medulla. However, insulin-infused IRKO mice, with targeted deletion of insulin receptor from tubule epithelial cells of the kidney, had ∼50% reduced eNOS protein levels in their inner medulla along with a significant rise in BP relative to WT littermates. We have previously reported increased baseline BP and reduced urine NOx in IRKO mice. Thus, reduced insulin receptor signaling in IMCD could contribute to hypertension in the insulin-resistant state.

Collaboration


Dive into the Bandana Chakravarti's collaboration.

Top Co-Authors

Avatar

Naibedya Chattopadhyay

Central Drug Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jawed A. Siddiqui

Central Drug Research Institute

View shared research outputs
Top Co-Authors

Avatar

Rituraj Konwar

Central Drug Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gaurav Swarnkar

Central Drug Research Institute

View shared research outputs
Top Co-Authors

Avatar

Kunal Sharan

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Rakesh Maurya

Central Drug Research Institute

View shared research outputs
Top Co-Authors

Avatar

Arun Kumar Trivedi

Central Drug Research Institute

View shared research outputs
Top Co-Authors

Avatar

Madan M. Godbole

Sanjay Gandhi Post Graduate Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Manmeet Kumar

Central Drug Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge