Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bang-Le Zhang is active.

Publication


Featured researches published by Bang-Le Zhang.


PLOS ONE | 2013

Comparision of Piceid and Resveratrol in Antioxidation and Antiproliferation Activities In Vitro

Dan Su; Ying Cheng; Miao Liu; Dao-zhou Liu; Han Cui; Bang-Le Zhang; Si-Yuan Zhou; Tiehong Yang; Qibing Mei

Background The clinic therapeutic effect of resveratrol is limited due to its low oral bioavailability. Piceid, a precursor of resveratrol, is the most abundant form of resveratrol in nature. A number of studies have hypothesized that piceid may have the same bioactivities like those of resveratrol. The aim of this work is to compare piceid with resveratrol in antioxidation and antiproliferation activities in vitro. Methods The antioxidative effects of resveratrol and piceid were evaluated by phenanthroline-Fe2+ method and H2O2-induced oxidative injury cell model. The antiproliferation effects were determined by MTT method in human liver tumor HepG2 cells, human breast cancer MDA-MB-231 cells and MCF-7 cells. The effects of resveratrol and piceid on the cell cycle and the apoptosis were evaluated by flow cytometry. Additionally, the uptake profiles of resveratrol and piceid in cancer cells were observed using fluorescence microscopy and clarified by LC-MS/MS. Conclusion Piceid exhibited higher scavenging activity against hydroxyl radicals than resveratrol in vitro. Resveratrol showed a significant protective effect against H2O2-induced cell damage. What is more, resveratrol had biphasic effects on tumor cells. Resveratrol and piceid only showed significant cytotoxicity on tumor cells at high concentration (≥50 µmol/L), while low concentration of resveratrol (<30 µmol/L) increased the cell viability. The principal effect of resveratrol and piceid on the viability of tumor cells was caused by the cell cycle arrest, while the effect on apoptosis was relatively minor. The reason that piceid showed lower biological activity than resveratrol at the same concentration was probably because piceid was more difficult in being uptaken by cells.


PLOS ONE | 2014

Cellular uptake and antitumor activity of DOX-hyd-PEG-FA nanoparticles.

Wei-liang Ye; Jiang-bo Du; Bang-Le Zhang; Ren Na; Yan-feng Song; Qibing Mei; Ming-Gao Zhao; Si-Yuan Zhou

A PEG-based, folate mediated, active tumor targeting drug delivery system using DOX-hyd-PEG-FA nanoparticles (NPs) were prepared. DOX-hyd-PEG-FA NPs showed a significantly faster DOX release in pH 5.0 medium than in pH 7.4 medium. Compared with DOX-hyd-PEG NPs, DOX-hyd-PEG-FA NPs increased the intracellular accumulation of DOX and showed a DOX translocation from lysosomes to nucleus. The cytotoxicity of DOX-hyd-PEG-FA NPs on KB cells was much higher than that of free DOX, DOX-ami-PEG-FA NPs and DOX-hyd-PEG NPs. The cytotoxicity of DOX-hyd-PEG-FA NPs on KB cells was attenuated in the presence of exogenous folic acid. The IC50 of DOX-hyd-PEG-FA NPs and DOX-hyd-PEG NPs on A549 cells showed no significant difference. After DOX-hyd-PEG-FA NPs were intravenously administered, the amount of DOX distributed in tumor tissue was significantly increased, while the amount of DOX distributed in heart was greatly decreased as compared with free DOX. Compared with free DOX, NPs yielded improved survival rate, prolonged life span, delayed tumor growth and reduced the cardiotoxicity in tumor bearing mice model. These results indicated that the acid sensitivity, passive and active tumor targeting abilities were likely to act synergistically to enhance the drug delivery efficiency of DOX-hyd-PEG-FA NPs. Therefore, DOX-hyd-PEG-FA NPs are a promising drug delivery system for targeted cancer therapy.


PLOS ONE | 2012

In Vitro and In Vivo Antitumor Activity of a Novel pH-Activated Polymeric Drug Delivery System for Doxorubicin

Menglei Huan; Bang-Le Zhang; Zenghui Teng; Han Cui; Jieping Wang; Xinyou Liu; Hui Xia; Si-Yuan Zhou; Qibing Mei

Background Conventional chemotherapy agent such as doxorubicin (DOX) is of limited clinical use because of its inherently low selectivity, which can lead to systemic toxicity in normal healthy tissue. Methods A pH stimuli-sensitive conjugate based on polyethylene glycol (PEG) with covalently attachment doxorubicin via hydrazone bond (PEG-hyd-DOX) was prepared for tumor targeting delivery system. While PEG-DOX conjugates via amid bond (PEG-ami-DOX) was synthesized as control. Results The synthetic conjugates were confirmed by proton nuclear magnetic resonance (NMR) spectroscopy, the release profile of DOX from PEG-hyd-DOX was acid-liable for the hydrazone linkage between DOX and PEG, led to different intracellular uptake route; intracellular accumulation of PEG-hyd-DOX was higher than PEG-ami-DOX due to its pH-triggered profile, and thereby more cytotoxicity against MCF-7, MDA-MB-231 (breast cancer models) and HepG2 (hepatocellular carcinoma model) cell lines. Following the in vitro results, we xenografted MDA-MB-231 cell onto SCID mice, PEG-hyd-DOX showed stronger antitumor efficacy than free DOX and was tumor-targeting. Conclusions Results from these in vivo experiments were consistent with our in vitro results; suggested this pH-triggered PEG-hyd-DOX conjugate could target DOX to tumor tissues and release free drugs by acidic tumor environment, which would be potent in antitumor drug delivery.


Bioorganic & Medicinal Chemistry Letters | 2010

Synthesis and biological activity of the calcium modulator (R) and (S)-3-methyl 5-pentyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate

Bang-Le Zhang; Wei He; Xin Shi; Menglei Huan; Qiu-ju Huang; Si-Yuan Zhou

An efficient total synthesis of (R) and (S)-3-methyl 5-pentyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate in high optical purities is reported. The useful step is the resolution of racemic 2, 6-dimethyl-5-methoxycarbonyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3-carboxylic acid by using commercially available Cinchona alkaloids cinchonidine and quinidine as the resolving agents. Under the optimum conditions, the optical purities for R- and S-enantiomers are extremely high (ee>99.5%). The further dihydropyridine receptor binding activity assay shows that the S-enantiomer is more potent than R-enantiomer both in rat cardiac (approximately 19 times) and cerebral cortex membrane (12 times).


Scientific Reports | 2015

Dual subcellular compartment delivery of doxorubicin to overcome drug resistant and enhance antitumor activity

Yan-feng Song; Dao-zhou Liu; Ying Cheng; Miao Liu; Wei-liang Ye; Bang-Le Zhang; Xinyou Liu; Si-Yuan Zhou

In order to overcome drug resistant and enhance antitumor activity of DOX, a new pH-sensitive micelle (DOX/DQA-DOX@DSPE-hyd-PEG-AA) was prepared to simultaneously deliver DOX to nucleus and mitochondria. Drug released from DOX/DQA-DOX@DSPE-hyd-PEG-AA showed a pH-dependent manner. DOX/DQA-DOX@DSPE-hyd-PEG-AA induced the depolarization of mitochondria and apoptosis in MDA-MB-231/ADR cells and A549 cells, which resulted in the high cytotoxicity of DOX/DQA-DOX@DSPE-hyd-PEG-AA against MDA-MB-231/ADR cells and A549 cells. Confocal microscopy confirmed that DOX/DQA-DOX@DSPE-hyd-PEG-AA simultaneously delivered DQA-DOX and DOX to the mitochondria and nucleus of tumor cell. After DOX/DQA-DOX@DSPE-hyd-PEG-AA was injected to the tumor-bearing nude mice by the tail vein, DOX was mainly found in tumor tissue. But DOX was widely distributed in the whole body after the administration of free DOX. Compared with free DOX, the same dose of DOX/DQA-DOX@DSPE-hyd-PEG-AA significantly inhibited the growth of DOX-resistant tumor in tumor-bearing mice without obvious systemic toxicity. Therefore, dual subcellular compartment delivery of DOX greatly enhanced the antitumor activity of DOX on DOX-resistant tumor. DOX/DQA-DOX@DSPE-hyd-PEG-AA has the potential in target therapy for DOX-resistant tumor.


Synthetic Communications | 2005

PTC‐Promoted Japp–Klingmann Reaction for the Synthesis of Indole Derivatives

Wei He; Bang-Le Zhang; Zhong‐Jie Li; Sheng-Yong Zhang

Abstract Indole derivatives have been efficiently synthesized from ethyl 2‐phenylhydrazono‐5‐phthalimido‐pentanoate and its derivatives, which were obtained by Japp–Klingmann reaction under phase‐transfer catalytic (PTC) conditions. Several different phase‐transfer catalysts were investigated and dimethyldioctadecyl ammonium chloride (DMDOA) was found to promote this reaction efficiently. Using DMDOA as the PTC, aryl hydrazones were obtained in yields of 90%. The pure aryl hydrazones were then efficiently cyclized to indole derivatives in yields of more than 80%.


Bioorganic & Medicinal Chemistry Letters | 2017

Chitosan cross-linked with poly(ethylene glycol)dialdehyde via reductive amination as effective controlled release carriers for oral protein drug delivery

Zhi-Wei Ma; Chen Li; Yi-Yang Jia; Min Luo; Xi-Xi Ma; Si-Yuan Zhou; Bang-Le Zhang

The covalently cross-linked chitosan-poly(ethylene glycol)1540 derivatives have been developed as a controlled release system with potential for the delivery of protein drug. The swelling characteristics of the hydrogels based on these derivatives as the function of different PEG content and the release profiles of a model protein (bovine serum albumin, BSA) from the hydrogels were evaluated in simulated gastric fluid with or without enzyme in order to simulate the gastrointestinal tract conditions. The derivatives cross-linked with difunctional PEG1540-dialdehyde via reductive amination can swell in alkaline pH and remain insoluble in acidic medium. The cumulative release amount of BSA was relatively low in the initial 2h and increased significantly at pH 7.4 with intestinal lysozyme for additional 12h. The results proved that the release-and-hold behavior of the cross-linked CS-PEG1540H-CS hydrogel provided a swell and intestinal enzyme controlled release carrier system, which is suitable for oral protein drug delivery.


Bioorganic & Medicinal Chemistry Letters | 2016

Cholesterol derived cationic lipids as potential non-viral gene delivery vectors and their serum compatibility

Jia Ju; Menglei Huan; Ning Wan; Yi-Lin Hou; Xi-Xi Ma; Yi-Yang Jia; Chen Li; Si-Yuan Zhou; Bang-Le Zhang

Cholesterol derivatives M1-M6 as synthetic cationic lipids were designed and the biological evaluation of the cationic liposomes based on them as non-viral gene delivery vectors were described. Plasmid pEGFP-N1, used as model gene, was transferred into 293T cells by cationic liposomes formed with M1-M6 and transfection efficiency and GFP expression were tested. Cationic liposomes prepared with cationic lipids M1-M6 exhibited good transfection activity, and the transfection activity was parallel (M2 and M4) or superior (M1 and M6) to that of DC-Chol derived from the same backbone. Among them, the transfection efficiency of cationic lipid M6 was parallel to that of the commercially available Lipofectamine2000. The optimal formulation of M1 and M6 were found to be at a mol ratio of 1:0.5 for cationic lipid/DOPE, and at a N/P charge mol ratio of 3:1 for liposome/DNA. Under optimized conditions, the efficiency of M1 and M6 is greater than that of all the tested commercial liposomes DC-Chol and Lipofectamine2000, even in the presence of serum. The results indicated that M1 and M6 exhibited low cytotoxicity, good serum compatibility and efficient transfection performance, having the potential of being excellent non-viral vectors for gene delivery.


Bioscience, Biotechnology, and Biochemistry | 2012

In Vivo Anti-Tumor Activity of a New Doxorubicin Conjugate via α-Linolenic Acid

Menglei Huan; Han Cui; Zenghui Teng; Bang-Le Zhang; Jieping Wang; Xinyou Liu; Hui Xia; Si-Yuan Zhou; Qibing Mei

The conventional chemotherapy agent, doxorubicin, is of limited clinical use because of its systemic toxicity toward normal healthy tissue. A new doxorubicin conjugate with α-linolenic acid showed good anti-tumor activity with lower toxicity than free doxorubicin and exhibited an active tumor-targeting profile due to the introduction of α-linolenic acid which might be an effective tumor-targeting moiety for the modification of chemotherapeutics.


Molecular Pharmaceutics | 2016

pH-Triggered Surface Charge Reversed Nanoparticle with Active Targeting To Enhance the Antitumor Activity of Doxorubicin

Jiang-bo Du; Ying Cheng; Zenghui Teng; Menglei Huan; Miao Liu; Han Cui; Bang-Le Zhang; Si-Yuan Zhou

PLGA nanoparticles are widely used in tumor targeting drug delivery systems. However, the naked PLGA nanoparticles (NNPs) not only have low drug loading but also can be rapidly removed from blood circulation by the immune system. The aim of this study was to prepare pH-triggered surface charge reversed lipid hybrid PLGA nanoparticles (LNPs) to enhance drug loading and drug delivery efficiency. CHO-Arg-His-OMe and FA-PEG-DSPE were synthesized to modify PLGA nanoparticles to prepare LNPs. The drug loading and encapsulation rate of LNPs were greatly improved as compared with NNPs. In pH 7.4 medium, doxorubicin (DOX)-loaded LNPs showed negative charge and released DOX slowly. In pH 5.0 medium, DOX-loaded LNPs exhibited positive charge and released DOX quickly. DOX-loaded LNPs delivered more DOX to the nucleus of KB cells and MBA-MD-231/ADR cells than did free DOX. In addition, DOX-loaded LNPs significantly inhibited the proliferation of KB cells and MBA-MD-231/ADR cells. Compared with free DOX, the same dose of the DOX-loaded LNPs delivered more DOX to tumor tissue. Thus, DOX-loaded LNPs significantly inhibited the growth of tumor in tumor-bearing nude mice and obviously reduced the systemic toxicity of DOX. In conclusion, pH-triggered surface charge reversed DOX-loaded LNPs significantly enhanced the antitumor activity of DOX in vitro and in vivo. DOX-loaded LNPs had great potential in tumor targeted chemotherapy.

Collaboration


Dive into the Bang-Le Zhang's collaboration.

Top Co-Authors

Avatar

Si-Yuan Zhou

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Qibing Mei

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Wei He

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Han Cui

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Menglei Huan

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Ning Wan

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Ying Cheng

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Dao-zhou Liu

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Miao Liu

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Yi-Yang Jia

Fourth Military Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge