Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bang Liu is active.

Publication


Featured researches published by Bang Liu.


Genome Biology | 2007

LongSAGE analysis of skeletal muscle at three prenatal stages in Tongcheng and Landrace pigs

Zhonglin Tang; Yong Li; Ping Wan; Xiaoping Li; Shuhong Zhao; Bang Liu; Bin Fan; Mengjin Zhu; Mei Yu; Kui Li

BackgroundObese and lean pig breeds show obvious differences in muscle growth; however, the molecular mechanism underlying phenotype variation remains unknown. Prenatal muscle development programs postnatal performance. Here, we describe a genome-wide analysis of differences in prenatal skeletal muscle between Tongcheng (a typical indigenous Chinese breed) and Landrace (a leaner Western breed) pigs.ResultsWe generated transcriptome profiles of skeletal muscle from Tongcheng and Landrace pigs at 33, 65 and 90 days post coitus (dpc), using long serial analysis of gene expression (LongSAGE). We sequenced 317,115 LongSAGE tags and identified 1,400 and 1,201 differentially expressed transcripts during myogenesis in Tongcheng and Landrace pigs, respectively. From these, the Gene Ontology processes and expression patterns of these differentially expressed genes were constructed. Most of the genes showed different expression patterns in the two breeds. We also identified 532, 653 and 459 transcripts at 33, 65 and 90 dpc, respectively, that were differentially expressed between the two breeds. Growth factors, anti-apoptotic factors and genes involved in the regulation of protein synthesis were up-regulated in Landrace pigs. Finally, 12 differentially expressed genes were validated by quantitative PCR.ConclusionOur data show that gene expression phenotypes differ significantly between the two breeds. In particular, a slower muscle growth rate and more complicated molecular changes were found in Tongcheng pigs, while genes responsible for increased cellular growth and myoblast survival were up-regulated in Landrace pigs. Our analyses will assist in the identification of candidate genes for meat production traits and elucidation of the development of prenatal skeletal muscle in mammals.


Genetics Selection Evolution | 2003

Genetic variation and relationships of eighteen Chinese indigenous pig breeds

Shulin Yang; Zhigang Wang; Bang Liu; Guixiang Zhang; Shuhong Zhao; Mei Yu; Bin Fan; Meng-Hua Li; T. A. Xiong; Kui Li

Chinese indigenous pig breeds are recognized as an invaluable component of the worlds pig genetic resources and are divided traditionally into six types. Twenty-six microsatellite markers recommended by the FAO (Food and Agriculture Organization) and ISAG (International Society of Animal Genetics) were employed to analyze the genetic diversity of 18 Chinese indigenous pig breeds with 1001 individuals representing five types, and three commercial breeds with 184 individuals. The observed heterozygosity, unbiased expected heterozygosity and the observed and effective number of alleles were used to estimate the genetic variation of each indigenous breed. The unbiased expected heterozygosity ranged between 0.700 (Mashen) and 0.876 (Guanling), which implies that there is an abundant genetic variation stored in Chinese indigenous pig breeds. Breed differentiation was shown by fixation indices (FIT, FIS, and FST). The FSTper locus varied from 0.019 (S0090) to 0.170 (SW951), and the average FSTof all loci was 0.077, which means that most of the genetic variation was kept within breeds and only a little of the genetic variation exists between populations. The Neighbor-Joining tree was constructed based on the Nei DA(1978) distances and one large cluster with all local breeds but the Mashen breed, was obtained. Four smaller sub-clusters were also found, which included two to four breeds each. These results, however, did not completely agree with the traditional type of classification. A Neighbor-Joining dendrogram of individuals was established from the distance of – ln(proportions of shared alleles); 92.14% of the individuals were clustered with their own breeds, which implies that this method is useful for breed demarcation. This extensive research on pig genetic diversity in China indicates that these 18 Chinese indigenous breeds may have one common ancestor, helps us to better understand the relative distinctiveness of pig genetic resources, and will assist in developing a national plan for the conservation and utilization of Chinese indigenous pig breeds.


BMC Molecular Biology | 2011

TEAD1-dependent expression of the FoxO3a gene in mouse skeletal muscle

Haifang Qiu; Fengli Wang; Chuxin Liu; Xuewen Xu; Bang Liu

BackgroundTEAD1 (TEA domain family member 1) is constitutively expressed in cardiac and skeletal muscles. It acts as a key molecule of muscle development, and trans-activates multiple target genes involved in cell proliferation and differentiation pathways. However, its target genes in skeletal muscles, regulatory mechanisms and networks are unknown.ResultsIn this paper, we have identified 136 target genes regulated directly by TEAD1 in skeletal muscle using integrated analyses of ChIP-on-chip. Most of the targets take part in the cell process, physiology process, biological regulation metabolism and development process. The targets also play an important role in MAPK, mTOR, T cell receptor, JAK-STAT, calcineurin and insulin signaling pathways. TEAD1 regulates foxo3a transcription through binding to the M-CAT element in foxo3a promoter, demonstrated with independent ChIP-PCR, EMSA and luciferase reporter system assay. In addition, results of over-expression and inhibition experiments suggest that foxo3a is positively regulated by TEAD1.ConclusionsOur present data suggests that TEAD1 plays an important role in the regulation of gene expression and different signaling pathways may co-operate with each other mediated by TEAD1. We have preliminarily concluded that TEAD1 may regulate FoxO3a expression through calcineurin/MEF2/NFAT and IGF-1/PI3K/AKT signaling pathways in skeletal muscles. These findings provide important clues for further analysis of the role of FoxO3a gene in the formation and transformation of skeletal muscle fiber types.


Molecular Ecology Resources | 2015

Genome-wide analysis reveals artificial selection on coat colour and reproductive traits in Chinese domestic pigs.

Chao Wang; Hongyang Wang; Yu Zhang; Zhonglin Tang; Kui Li; Bang Liu

Pigs from Asia and Europe were independently domesticated from c. 9000 years ago. During this period, strong artificial selection has led to dramatic phenotypic changes in domestic pigs. However, the genetic basis underlying these morphological and behavioural adaptations is relatively unknown, particularly for indigenous Chinese pigs. Here, we performed a genome‐wide analysis to screen 196 regions with selective sweep signals in Tongcheng pigs, which are a typical indigenous Chinese breed. Genes located in these regions have been found to be involved in lipid metabolism, melanocyte differentiation, neural development and other biological processes, which coincide with the evolutionary phenotypic changes in this breed. A synonymous substitution, c.669T>C, in ESR1, which colocalizes with a major quantitative trait locus for litter size, shows extreme differences in allele frequency between Tongcheng pigs and wild boars. Notably, the variant C allele in this locus exhibits high allele frequency in most Chinese populations, suggesting a consequence of positive selection. Five genes (PRM1, PRM2, TNP2, GPR149 and JMJD1C) related to reproductive traits were found to have high haplotype similarity in Chinese breeds. Two selected genes, MITF and EDNRB, are implied to shape the two‐end black colour trait in Tongcheng pig. Subsequent SNP microarray studies of five Chinese white‐spotted breeds displayed a concordant signature at both loci, suggesting that these two genes are responsible for colour variations in Chinese breeds. Utilizing massively parallel sequencing, we characterized the candidate sites that adapt to artificial and environmental selections during the Chinese pig domestication. This study provides fundamental proof for further research on the evolutionary adaptation of Chinese pigs.


International Journal of Biological Sciences | 2016

Genome Wide Sampling Sequencing for SNP Genotyping: Methods, Challenges and Future Development.

Zhihua Jiang; Hongyang Wang; Jennifer J. Michal; Xiang Zhou; Bang Liu; Leah C. Solberg Woods; Rita A. Fuchs

Genetic polymorphisms, particularly single nucleotide polymorphisms (SNPs), have been widely used to advance quantitative, functional and evolutionary genomics. Ideally, all genetic variants among individuals should be discovered when next generation sequencing (NGS) technologies and platforms are used for whole genome sequencing or resequencing. In order to improve the cost-effectiveness of the process, however, the research community has mainly focused on developing genome-wide sampling sequencing (GWSS) methods, a collection of reduced genome complexity sequencing, reduced genome representation sequencing and selective genome target sequencing. Here we review the major steps involved in library preparation, the types of adapters used for ligation and the primers designed for amplification of ligated products for sequencing. Unfortunately, currently available GWSS methods have their drawbacks, such as inconsistency in the number of reads per sample library, the number of sites/targets per individual, and the number of reads per site/target, all of which result in missing data. Suggestions are proposed here to improve library construction, genotype calling accuracy, genome-wide marker density and read mapping rate. In brief, optimized GWSS library preparation should generate a unique set of target sites with dense distribution along chromosomes and even coverage per site across all individuals.


PLOS ONE | 2013

Reactomes of porcine alveolar macrophages infected with porcine reproductive and respiratory syndrome virus.

Zhihua Jiang; Xiang Zhou; Jennifer J. Michal; Xiao-Lin Wu; Lifan Zhang; Ming Zhang; Bo Ding; Bang Liu; Valipuram S. Manoranjan; John D. Neill; Gregory P. Harhay; Marcus E. Kehrli; Laura C. Miller

Porcine reproductive and respiratory syndrome (PRRS) has devastated pig industries worldwide for many years. It is caused by a small RNA virus (PRRSV), which targets almost exclusively pig monocytes or macrophages. In the present study, five SAGE (serial analysis of gene expression) libraries derived from 0 hour mock-infected and 6, 12, 16 and 24 hours PRRSV-infected porcine alveolar macrophages (PAMs) produced a total 643,255 sequenced tags with 91,807 unique tags. Differentially expressed (DE) tags were then detected using the Bayesian framework followed by gene/mRNA assignment, arbitrary selection and manual annotation, which determined 699 DE genes for reactome analysis. The DAVID, KEGG and REACTOME databases assigned 573 of the DE genes into six biological systems, 60 functional categories and 504 pathways. The six systems are: cellular processes, genetic information processing, environmental information processing, metabolism, organismal systems and human diseases as defined by KEGG with modification. Self-organizing map (SOM) analysis further grouped these 699 DE genes into ten clusters, reflecting their expression trends along these five time points. Based on the number one functional category in each system, cell growth and death, transcription processes, signal transductions, energy metabolism, immune system and infectious diseases formed the major reactomes of PAMs responding to PRRSV infection. Our investigation also focused on dominant pathways that had at least 20 DE genes identified, multi-pathway genes that were involved in 10 or more pathways and exclusively-expressed genes that were included in one system. Overall, our present study reported a large set of DE genes, compiled a comprehensive coverage of pathways, and revealed system-based reactomes of PAMs infected with PRRSV. We believe that our reactome data provides new insight into molecular mechanisms involved in host genetic complexity of antiviral activities against PRRSV and lays a strong foundation for vaccine development to control PRRS incidence in pigs.


Developmental and Comparative Immunology | 2013

Molecular characterization of porcine SARM1 and its role in regulating TLRs signaling during highly pathogenic porcine reproductive and respiratory syndrome virus infection in vivo

Xiang Zhou; Tengfei Jiang; Xiaochuan Du; Ping Zhou; Zhihua Jiang; Jennifer J. Michal; Bang Liu

Toll-like receptors (TLRs) are important pattern-recognition receptors (PRRs) that trigger innate immune response and mediate acquired immunity. Evidence has shown that SARM1 (sterile-α and TIR motif containing protein 1) is one of five TIR domain-containing adaptor proteins involved in TLRs signaling transduction. In the present study, a full-length cDNA sequence was cloned for the porcine SARM1 gene, which contains nine exons. Using the radiation hybrid mapping approach, we assigned the porcine gene to SSC12 q13. Under the normal condition, porcine SARM1 was highly expressed in brain and spleen. Polyinosinic-polycytidylic acid (poly (I:C)) weakly induced the porcine SARM1 expression in the early stimulation. We found that porcine SARM1 protein is localized in mitochondria and attenuates NF-κB activation induced by stimulation and infection. The quantitative real-time PCR (Q-PCR) analysis showed that the expression of porcine SARM1 significantly decreased in several tissues of Tongcheng pigs infected with highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV). Gene-interaction network analysis for porcine SARM1 in porcine alveolar macrophages (PAMs) showed that down-regulation of SARM1 gene in infected Tongcheng pig may modulate TRIF-depend TLRs signaling and regulate the expression of disease-resistant genes and inflammatory genes. Our findings provide evidence that porcine SARM1 may play an important role in immune regulation with PRRSV infection.


PLOS ONE | 2014

Analysis of genome-wide copy number variations in Chinese indigenous and western pig breeds by 60 K SNP genotyping arrays.

Yanan Wang; Zhonglin Tang; Yaqi Sun; Hongyang Wang; Chao-Fu Wang; Shaobo Yu; Jing Liu; Yu Zhang; Bin Fan; Kui Li; Bang Liu

Copy number variations (CNVs) represent a substantial source of structural variants in mammals and contribute to both normal phenotypic variability and disease susceptibility. Although low-resolution CNV maps are produced in many domestic animals, and several reports have been published about the CNVs of porcine genome, the differences between Chinese and western pigs still remain to be elucidated. In this study, we used Porcine SNP60 BeadChip and PennCNV algorithm to perform a genome-wide CNV detection in 302 individuals from six Chinese indigenous breeds (Tongcheng, Laiwu, Luchuan, Bama, Wuzhishan and Ningxiang pigs), three western breeds (Yorkshire, Landrace and Duroc) and one hybrid (Tongcheng×Duroc). A total of 348 CNV Regions (CNVRs) across genome were identified, covering 150.49 Mb of the pig genome or 6.14% of the autosomal genome sequence. In these CNVRs, 213 CNVRs were found to exist only in the six Chinese indigenous breeds, and 60 CNVRs only in the three western breeds. The characters of CNVs in four Chinese normal size breeds (Luchuan, Tongcheng and Laiwu pigs) and two minipig breeds (Bama and Wuzhishan pigs) were also analyzed in this study. Functional annotation suggested that these CNVRs possess a great variety of molecular function and may play important roles in phenotypic and production traits between Chinese and western breeds. Our results are important complementary to the CNV map in pig genome, which provide new information about the diversity of Chinese and western pig breeds, and facilitate further research on porcine genome CNVs.


Animal Genetics | 2014

Genome-wide scans to detect positive selection in Large White and Tongcheng pigs

Xiuling Li; Songbai Yang; Zhonglin Tang; K. Li; Max F. Rothschild; Bang Liu; Bin Fan

Due to the direction, intensity, duration and consistency of genetic selection, especially recent artificial selection, the production performance of domestic pigs has been greatly changed. Therefore, we reasoned that there must be footprints or selection signatures that had been left during domestication. In this study, with porcine 60K BeadChip genotyping data from both commercial Large White and local Chinese Tongcheng pigs, we calculated the extended haplotype homozygosity values of the two breeds using the long-range haplotype method to detect selection signatures. We found 34 candidate regions, including 61 known genes, from Large White pigs and 25 regions comprising 57 known genes from Tongcheng pigs. Many selection signatures were found on SSC1, SSC4, SSC7 and SSC14 regions in both populations. According to quantitative trait loci and network pathway analyses, most of the regions and genes were linked to growth, reproduction and immune responses. In addition, the average genetic differentiation coefficient FST was 0.254, which means that there had already been a significant differentiation between the breeds. The findings from this study can contribute to further research on molecular mechanisms of pig evolution and domestication and also provide valuable references for improvement of their breeding and cultivation.


Virus Research | 2016

Differences of immune responses between Tongcheng (Chinese local breed) and Large White pigs after artificial infection with highly pathogenic porcine reproductive and respiratory syndrome virus

Wan Liang; Zhenhong Li; Peng Wang; Pengcheng Fan; Yu Zhang; Qingde Zhang; Yan Wang; Xuewen Xu; Bang Liu

Porcine reproductive and respiratory syndrome (PRRS) is one of the severest infectious diseases of pigs throughout the world. Pigs of different breeds infected with PRRS virus (PRRSV) have been reported to vary in their immune responses. Here, the differences of immune responses to highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) were investigated by artificially infecting Tongcheng (TC) pigs (a Chinese indigenous breed) and Large White (LW) pigs with PRRSV WUH3. Compared to LW pigs, TC pigs showed less severe symptoms and lower level of viral load. The routine blood test results indicated that TC pigs were relatively steady in terms of erythrocyte, leukocyte and platelet. Additionally, PRRSV infection induced higher IFN-γ activity in TC pigs, but stimulated an excessive level of IL-10 and IL-12p40 in LW pigs. Our study provides direct evidence that TC pigs have stronger resistance to early PRRSV infection than LW pigs, suggesting that the resistance of pigs to PRRSV is likely associated with breed differences.

Collaboration


Dive into the Bang Liu's collaboration.

Top Co-Authors

Avatar

Bin Fan

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xuewen Xu

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Mei Yu

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Shuhong Zhao

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Kui Li

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Mengjin Zhu

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Qingde Zhang

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Zhongzhen Peng

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiang Zhou

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Zhihua Jiang

Washington State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge