Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bang-Xiao Zheng is active.

Publication


Featured researches published by Bang-Xiao Zheng.


Environmental Science & Technology | 2016

Electron Shuttles Enhance Anaerobic Ammonium Oxidation Coupled to Iron(III) Reduction

Guowei Zhou; Xiao-Ru Yang; Hu Li; Christopher W. Marshall; Bang-Xiao Zheng; Yu Yan; Jian-Qiang Su; Yong-Guan Zhu

Anaerobic ammonium oxidation coupled to iron(III) reduction, termed Feammox, is a newly discovered nitrogen cycling process. However, little is known about the roles of electron shuttles in the Feammox reactions. In this study, two forms of Fe(III) (oxyhydr)oxide ferrihydrite (ex situ ferrihydrite and in situ ferrihydrite) were used in dissimilatory Fe(III) reduction (DIR) enrichments from paddy soil. Evidence for Feammox in DIR enrichments was demonstrated using the (15)N-isotope tracing technique. The extent and rate of both the (30)N2-(29)N2 and Fe(II) formation were enhanced when amended with electron shuttles (either 9,10-anthraquinone-2,6-disulfonate (AQDS) or biochar) and further simulated when these two shuttling compounds were combined. Although the Feammox-associated Fe(III) reduction accounted for only a minor proportion of total Fe(II) formation compared to DIR, it was estimated that the potentially Feammox-mediated N loss (0.13-0.48 mg N L(-1) day(-1)) was increased by 17-340% in the enrichments by the addition of electron shuttles. The addition of electron shuttles led to an increase in the abundance of unclassified Pelobacteraceae, Desulfovibrio, and denitrifiers but a decrease in Geobacter. Overall, we demonstrated a stimulatory effect of electron shuttles on Feammox that led to higher N loss, suggesting that electron shuttles might play a crucial role in Feammox-mediated N loss from soils.


Scientific Reports | 2017

Long-term nitrogen fertilization decreased the abundance of inorganic phosphate solubilizing bacteria in an alkaline soil

Bang-Xiao Zheng; Xiuli Hao; Kai Ding; Guowei Zhou; Qing-Lin Chen; Jia-bao Zhang; Yong-Guan Zhu

Inorganic phosphate solubilizing bacteria (iPSB) are essential to facilitate phosphorus (P) mobilization in alkaline soil, however, the phylogenetic structure of iPSB communities remains poorly characterized. Thus, we use a reference iPSB database to analyze the distribution of iPSB communities based on 16S rRNA gene illumina sequencing. Additionally, a noval pqqC primer was developed to quantify iPSB abundance. In our study, an alkaline soil with 27-year fertilization treatment was selected. The percentage of iPSB was 1.10~2.87% per sample, and the dominant iPSB genera were closely related to Arthrobacter, Bacillus, Brevibacterium and Streptomyces. Long-term P fertilization had no significant effect on the abundance of iPSB communities. Rather than P and potassium (K) additions, long-term nitrogen (N) fertilization decreased the iPSB abundance, which was validated by reduced relative abundance of pqqC gene (pqqC/16S). The decreased iPSB abundance was strongly related to pH decline and total N increase, revealing that the long-term N additions may cause pH decline and subsequent P releases relatively decreasing the demands of the iPSB community. The methodology and understanding obtained here provides insights into the ecology of inorganic P solubilizers and how to manipulate for better P use efficiency.


International Journal of Systematic and Evolutionary Microbiology | 2017

Massilia phosphatilytica sp. nov., a phosphate solubilizing bacteria isolated from a long-term fertilized soil

Bang-Xiao Zheng; Qing-Fang Bi; Xiu-Li Hao; Guowei Zhou; Xiao-Ru Yang

A Gram-stain-negative and rod-shaped bacterial strain, 12-OD1T, with rock phosphate solubilizing ability was isolated from agricultural soil in Hailun, Heilongjiang, PR China. The isolate was affiliated to the genus Massilia, based on 16S rRNA gene sequence alignments, having the highest similarities with Massilia putida6 NM-7T (98.67 %), Massilia kyonggiensis TSA1T (98.28 %), and Massilia norwichensis NS9T (98.07 %), respectively. The DNA G+C content was 67.72 mol% and DNA-DNA hybridization showed low relatedness values (less than 47 %) between strain 12-OD1T and other phylogenetically related species of the genus Massilia. The predominant isoprenoid quinone was Q-8 and the polar lipid profile comprised diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The major fatty acids were C17 : 0 cyclo (25.4 %), C16 : 0 (23.4 %) and summed feature 3 (C16 : 1ω7c and/or C16 : 1 ω6c) (22.5 %), which differentiates it from close relatives within the genus Massilia. Combined genetic, physiological and biochemical properties indicate that strain 12-OD1T is a novel species of the genus Massilia, for which the name Massilia phosphatilytica sp. nov., is proposed, with the type strain 12-OD1T (=CCTCC AB 2016251T=LMG 29956T=KCTC 52513T).


Frontiers in Microbiology | 2017

Biochar Addition Increases the Rates of Dissimilatory Iron Reduction and Methanogenesis in Ferrihydrite Enrichments

Guowei Zhou; Xiao-Ru Yang; Christopher W. Marshall; Hu Li; Bang-Xiao Zheng; Yu Yan; Jian-Qiang Su; Yong-Guan Zhu

Biochar contains quinones and aromatic structures that facilitate extracellular electron transfer between microbial cells and insoluble minerals. In this study, granulated biochar (1.2–2 mm) and powdered biochar (<0.15 mm) were amended to two ferrihydrite (in situ ferrihydrite and ex situ ferrihydrite) enrichments to investigate the effect of biochar with different particle sizes on dissimilatory iron(III)-reducing bacteria (DIRB) and methanogens. Biochar addition significantly stimulated the reduction of both in situ ferrihydrite and ex situ ferrihydrite and the production of methane. Powdered biochar amendments increased iron reduction compared to granulated biochar amendment in both the in situ ferrihydrite and ex situ ferrihydrite enrichments. However, no significant difference was observed in methane production between the powdered biochar and granulated biochar amendments in the two ferrihydrite enrichments. Analysis of 16S rRNA gene sequences showed that both DIRB and methanogens were enriched after biochar amendments in the in situ ferrihydrite and ex situ ferrihydrite enrichments. Taxa belonging to the Geobacteraceae and methanogenic genus affiliated to Methanosarcina were detected with significantly higher relative abundances in powdered biochar amendments than those in granulated biochar amendments in both the ferrihydrite enrichments. X-ray diffraction analysis indicated green rust [Fe2(CO3) (OH)] and vivianite [Fe3(PO4)2 8(H2O)] formed in the ex situ ferrihydrite and in situ ferrihydrite enrichments without biochar addition, respectively. After granulated biochar amendment, the mineral phase changed from the green rust to vivianite in the ex situ ferrihydrite enrichment, while crystalline vivianite and iron oxide (γ-Fe2O3) were detected simultaneously in the in situ ferrihydrite enrichment. No crystalline iron compound was found in the powdered biochar amendments in both ferrihydrite enrichments. Overall, our study illustrated that the addition of biochar affected iron-reducing and methane-generating microbial communities to some extent.


Science of The Total Environment | 2019

Straw biochar increases the abundance of inorganic phosphate solubilizing bacterial community for better rape (Brassica napus) growth and phosphate uptake

Bang-Xiao Zheng; Kai Ding; Xiao-Ru Yang; Mohammed A. M. Wadaan; Wael N. Hozzein; Josep Peñuelas; Yong-Guan Zhu

The direct application of inorganic-phosphate-solubilizing bacteria (iPSBs) for improving the efficiency of phosphorus (P) use leads to a low rate of bacterial survival. Biochar is a good inoculum carrier for microbial survival, and diverse feedstocks can have different effects. We generated an iPSB community using seven selected iPSB strains with various phylogenic taxonomies and P-solubilizing abilities. Biochar was then inoculated with the iPSB community and applied to soil in pots seeded with rape (Brassica napus). Growth of the rape for four weeks and the effects of biochars produced from six raw feedstocks, rice straw, rice husks, soybean straw, peanut shells, corn cobs and wood, were compared. The synthetic iPSB community had a larger capacity to solubilize inorganic P and exude organic anions than any of the individual strains. The structure of the iPSB community was analyzed by high-throughput sequencing four weeks after inoculation. All seven iPSB strains were detected, dominated by Arthrobacter defluvii 06-OD12. The abundance of the iPSB community was significantly correlated with rape biomass, P content and P uptake (P < 0.05). The biochar amendments conferred 6.86-24.24% survival of the iPSB community, with the straw biochars conferring the highest survival. The available-P content of the biochar rather than soil pH was the dominant factor for iPSB community structure, suggesting that the biochar material was critical for the survival and functioning of the iPSB community. Our study demonstrates the feasibility of biochar-assisted iPSB improvement of crop growth and P uptake.


Science China-life Sciences | 2018

QMEC: a tool for high-throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling

Bang-Xiao Zheng; Yong-Guan Zhu; Jordi Sardans; Josep Peñuelas; Jian-Qiang Su

Microorganisms are major drivers of elemental cycling in the biosphere. Determining the abundance of microbial functional traits involved in the transformation of nutrients, including carbon (C), nitrogen (N), phosphorus (P) and sulfur (S), is critical for assessing microbial functionality in elemental cycling. We developed a high-throughput quantitative-PCR-based chip, Quantitative microbial element cycling (QMEC), for assessing and quantifying the genetic potential of microbiota to mineralize soil organic matter and to release C, N, P and S. QMEC contains 72 primer pairs targeting 64 microbial functional genes for C, N, P, S and methane metabolism. These primer pairs were characterized by high coverage (average of 18–20 phyla covered per gene) and sufficient specificity (>70% match rate) with a relatively low detection limit (7–102 copies per run). QMEC was successfully applied to soil and sediment samples, identifying significantly different structures, abundances and diversities of the functional genes (P<0.05). QMEC was also able to determine absolute gene abundance. QMEC enabled the simultaneous qualitative and quantitative determination of 72 genes from 72 samples in one run, which is promising for comprehensively investigating microbially mediated ecological processes and biogeochemical cycles in various environmental contexts including those of the current global change.


Journal of Microbiology | 2018

Bacillus ferrooxidans sp. nov., an iron(II)-oxidizing bacterium isolated from paddy soil

Guowei Zhou; Xiao-Ru Yang; Jian-Qiang Su; Bang-Xiao Zheng; Yong-Guan Zhu

An endospore-forming bacterium, designated YT-3T, was isolated from a paddy soil in Yingtan, Jiangxi, China. Cells of strain YT-3T were Gram-positive, rod-shaped, facultative anaerobic, catalase, and oxidase positive. The optimum growth temperature and pH were 30°C (ranged from 15 to 50°C) and 6.5–7.0 (ranged from 3 to 11), respectively. Analysis of the 16S rRNA gene sequence showed that strain YT-3T was affiliated to the genus Bacillus and displayed the highest similarity to that of Bacillus drentensis JCM 21707T (98.3%), followed by B. ginsengisoli JCM 17335T (97.8%) and B. fumarioli JCM 21708T (97.0%). The similarity of rpoB gene sequence between strain YT-3T and B. drentensis JCM 21707T, B. ginsengisoli JCM 17335T and B. fumarioli JCM 21708T was 80.4%, 81.5%, and 82.1%, respectively. The genomic DNA G + C content was 44.9 mol%. The predominant respiratory quinone was Menaquinone-7, and meso-diaminopimelic acid was present in the peptidoglycan layer of cell wall. The major fatty acids were C15:0 anteiso (36.2%), C14:0 iso (19.6%), C15:0 iso (17.4%), and C16:0 iso (9.8%). The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phospholipids, and ammoniac phospholipids. The DNA-DNA hybridization values between isolate YT-3T and B. drentensis (JCM 21707T), B. ginsengisoli (JCM 17335T), and B. fumarioli (JCM 21708T) were 36.3%, 30.3%, and 25.3%, respectively. On the basis of physiological, genetic and biochemical data, strain YT-3T represented a novel species of the genus Bacillus, for which the name Bacillus ferrooxidans sp. nov was proposed. The type strain is YT-3T (= KCTC 33875T = CCTCC AB 2017049T).


International Journal of Systematic and Evolutionary Microbiology | 2018

Propionicimonas ferrireducens sp. nov., isolated from dissimilatory iron(III)-reducing microbial enrichment obtained from paddy soil

Guowei Zhou; Xiao-Ru Yang; Mohammed A. M. Wadaan; Wael N. Hozzein; Bang-Xiao Zheng; Jian-Qiang Su; Yong-Guan Zhu

A novel strain, designated Y1A-10 4-9-1T, with Gram-stain-positive and rod-shaped cells, was isolated from paddy soil in Yingtan, Jiangxi, China. Cells were 0.15-0.2 µm wide and 1.5-3.3 µm long. The optimal growth temperature was 30 °C and the optimal pH was 7.0. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the novel strain is closely related to Propionicimonas paludicola JCM 11933T (98.57 %). The genomic DNA G+C content was 63.9 mol%. The predominant menaquinone was MK-9(H4) and meso-diaminopimelic acid was present in the cell-wall peptidoglycan layer. The major polar lipids were diphosphatidylglycerol, one unidentified phospholipid and two unidentified lipids. The dominant cellular fatty acids detected were anteiso-C15 : 0 and iso-C16 : 0. The phylogenetic and phenotypic results supported that strain Y1A-10 4-9-1T is a novel species of the genus Propionicimonas, for which the name Propionicimonas ferrireducens sp. nov. is proposed. The type strain is Y1A-10 4-9-1T (=CCTCC AB 2016249T=KCTC 15566T=LMG 29810T).


AMB Express | 2017

Effects of combined application of nitrogen fertilizer and biochar on the nitrification and ammonia oxidizers in an intensive vegetable soil

Qing-Fang Bi; Qiuhui Chen; Xiao-Ru Yang; Hu Li; Bang-Xiao Zheng; Weiwei Zhou; Xiaoxia Liu; Peibin Dai; Kejie Li; Xianyong Lin


Chemical Geology | 2018

The microbial cycling of phosphorus on long-term fertilized soil: Insights from phosphate oxygen isotope ratios

Qing-Fang Bi; Bang-Xiao Zheng; Xian-Yong Lin; Kejie Li; Xipeng Liu; Xiu-Li Hao; Han Zhang; Jia-Bao Zhang; Deb P. Jaisi; Yong-Guan Zhu

Collaboration


Dive into the Bang-Xiao Zheng's collaboration.

Top Co-Authors

Avatar

Yong-Guan Zhu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiao-Ru Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Guowei Zhou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jian-Qiang Su

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hu Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Kai Ding

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Josep Peñuelas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu Yan

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge