Bannikuppe S. Vishwanath
University of Mysore
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bannikuppe S. Vishwanath.
Journal of Clinical Investigation | 1993
Bannikuppe S. Vishwanath; Felix J. Frey; Margaret J. Bradbury; Mary F. Dallman; Brigitte M. Frey
An important mechanism for the antiinflammatory effect of pharmacological doses of glucocorticoids is the inhibition of arachidonic acid release from phospholipids by phospholipase A2 (PLA2). As a corollary, one might predict that low endogenous concentrations of glucocorticoids favor inflammatory disease states. Indeed, clinical and experimental observations revealed an association between glucocorticoid deficiency and disease states caused by immunological and/or inflammatory mechanisms. The purpose of the present investigation was to study the regulation of PLA2 mRNA, protein, and enzyme activity in adrenalectomized (ADX) rats where glucocorticoid concentrations were below physiological levels. The mRNA of group I and II PLA2 were measured by PCR. Group II PLA2 mRNA was increased by 126 +/- 9% in lung tissue of ADX rats, whereas group I PLA2 was increased only by 27 +/- 1.5%. The increase in group II mRNA in ADX rats was reflected by a corresponding increase of group II PLA2 protein (70-100%) in lung, spleen, liver, and kidney. This increase was reversed by the administration of exogenous corticosterone. After ADX, the percentage increase in total PLA2 activity was higher than that of mRNA or PLA2 protein, suggesting that the activity of the enzyme was modulated by inhibitors or activators. The concentration of lipocortin-I, an inhibitor of PLA2 enzyme was strongly correlated with the activity of PLA2 in the tissues (lung, spleen, liver, and kidney). In all these tissues, the concentrations of lipocortin-I declined after ADX. Thus upregulation of PLA2 enzyme and downregulation of lipocortin-I might account for the enhanced inflammatory response in hypoglucocorticoid states.
Bioorganic & Medicinal Chemistry Letters | 2011
Ebraheem Abdu Musad; Riyaz Mohamed; Bahjat A. Saeed; Bannikuppe S. Vishwanath; K. M. Lokanatha Rai
Two series of five membered heterocyclic bis(1,3,4-oxadiazole) derivatives 2(a-h) and 3,5-bis(substituted)pyrazoles, isoxazoles 3(a,b,d-i), 4(a-c) were synthesized via oxidative cyclization of some diaroylhydrazones using chloramine-T and cyclocondensation reaction with hydrazine hydrate and hydroxylamine hydrochloride, respectively. The newly synthesized compounds were screened for antioxidant and anti-microbial activities. Compounds 2(b), 3(b), and 4(a) showed higher antioxidant activity at 10 μg/ml while compounds 2(a), 3(a), 3(f), and 4(a) exhibited better anti-microbial activity at 100μg/ml compared with standard vitamin C and ciprofloxacin, respectively. Structures of newly synthesized compounds were confirmed by elemental analysis and spectral IR, (1)H NMR, and (13)C NMR data.
Planta Medica | 2009
Kattepura K. Dharmappa; Raju Venkatesh Kumar; A. Nataraju; Riyaz Mohamed; Holenarasipura V. Shivaprasad; Bannikuppe S. Vishwanath
Oleanolic acid, a triterpenoid known for its anti-inflammatory properties, is commonly present in several medicinal plants. The present study evaluated the effect of oleanolic acid on sPLA (2), a key enzyme in inflammatory reactions. Oleanolic acid inhibited sPLA (2) activities of human synovial fluid (HSF), human pleural fluid (HPF) and VIPERA RUSSELLI (VRV-PL-V) and NAJA NAJA (NN-PL-I) snake venoms in a concentration-dependent manner. The IC (50) values of sPLA (2) from these sources ranged from 3.08 to 7.78 muM. Increasing calcium (Ca (2+)) concentrations from 2.5 to 15 mM and substrate concentration up to 180 nM did not affect the level of inhibition. Oleanolic acid enhanced the relative intrinsic fluorescence intensity of sPLA (2) (VRV-PL-V). In the presence of oleanolic acid, an apparent shift in the far UV-CD spectrum of sPLA (2) was observed. These studies indicate direct interaction with the enzyme and formation of an sPLA (2)-oleanolic acid complex. The complex formed resulted in irreversible inhibition of sPLA (2). Oleanolic acid inhibited indirect hemolytic activity and mouse paw edema induced by sPLA (2). Inhibition of IN VITRO and IN VIVO sPLA (2) activity by oleanolic acid explains the observed anti-inflammatory properties of several oleanolic acid-containing medicinal plants.
Gastroenterology | 1998
Geneviève Escher; Andrea R. Nawrocki; Thomas Staub; Bannikuppe S. Vishwanath; Brigitte M. Frey; Jürg Reichen; Felix J. Frey
BACKGROUND & AIMS 11 beta-Hydroxysteroid dehydrogenase (11 beta-OHSD) enzymes are responsible for the interconversion of active 11 beta-hydroxycorticosteroids into inactive 11-ketoglucocorticosteroids and by that mechanism regulate the intracellular access of the steroids to the cognate receptor. A down-regulation of the shuttle of active to inactive glucocorticoids enhances access of glucocorticosteroids to both the glucocorticoid and the mineralocorticoid receptors. In liver cirrhosis, enhanced mineralocorticoid and glucocorticoid effects are observed. We therefore investigated the impact of liver cirrhosis after bile duct ligation on the transcription and activity of 11 beta-OHSD1 and 11 beta-OHSD2 in the corresponding tissues. METHODS Messenger RNA from 11 beta-OHSD1 and 11 beta-OHSD2 was assessed by reverse-transcription polymerase chain reaction; activity was assessed by measuring the interconversion of corticosterone to dehydrocorticosterone. The effect of bile and bile salts was determined using COS-1 cells transfected with 11 beta-OHSD1 or 11 beta-OHSD2. RESULTS In liver tissue, the messenger RNA ratios of 11 beta-OHSD1 to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) levels and, in kidney tissue, the ratios of 11 beta-OHSD2 to GAPDH levels decreased after induction of liver cirrhosis. The 11 beta-OHSD activities were correspondingly reduced. Bile and individual bile salts inhibited 11 beta-OHSD1 and 11 beta-OHSD2 oxidative activity in transfected COS-1 cells. CONCLUSIONS These findings indicate that in liver cirrhosis the mineralocorticoid and glucocorticoid receptor-protecting effects by the 11 beta-OHSD isoenzymes are down-regulated and that by the same mechanism the glucocorticoid and mineralocorticoid effects are enhanced.
The FASEB Journal | 1999
Brigitte M. Frey; Bernhard F. X. Reber; Bannikuppe S. Vishwanath; Geneviève Escher; Felix J. Frey
Annexin I is an intracellular protein in search of a function. Ex vivo it has calcium‐ and phospholipid‐binding properties. To evaluate its role in vivo, MCF‐7 cells were stably transfected with annexin I in sense or antisense orientations. In cells overexpressing annexin I, calcium release was abrogated on stimulation of purinergic or bradykinin receptors, whereas non‐transfected cells or cells with down‐regulated annexin I released calcium within seconds. Basal calcium and calcium stores were not affected. The impaired calcium release was paralleled by a down‐regulation of the activities of phospholipase C, group II phospholipase A2, and E‐cadherin with altered adhesion and enhanced tumor growth on soft agar. Significantly smaller tumors, with the histologically most differentiated cells, were observed in nude mice inoculated with cells trans‐fected with the antisense rather than with the sense plasmid. These observations indicate that annexin I modulates cell functions by controlling intracellular calcium release. Frey, B. M., Reber, B. F. X., Vishwanath, B. S., Escher, G., Frey, F. J. Annexin I modulates cell functions by controlling intracellular calcium release. FASEB J. 13, 2235–2245 (1999)
Journal of Clinical Investigation | 1996
Bannikuppe S. Vishwanath; Felix J. Frey; G Escher; J Reichen; Brigitte M. Frey
Maintenance of renal function in liver cirrhosis requires increased synthesis of arachidonic acid derived prostaglandin metabolites. Arachidonate metabolites have been reported to be involved in modulation of liver damage. The purpose of the present study was to establish whether the first enzyme of the prostaglandin cascade synthesis, the phospholipase A2(PLA2) is altered in liver cirrhosis induced by bile duct excision. The mRNA of PLA2(group I and II) and annexin-I a presumptive inhibitor of PLA2 enzyme was measured by PCR using glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as an internal standard. The mean mRNA ratio of group II PLA2/GAPDH was increased in liver tissue by 126% (P < 0.001) and in kidney tissue by 263% (P < 0.006) following induction of liver cirrhosis. The increase in group II PLA2 mRNA in cirrhotic animals was reflected by an increase in PLA2 protein and enzyme activity in both liver and kidney tissues. Since the mRNA of group I PLA2 was not detectable and Group IV PLA2 activity measured in liver and kidney tissue samples was very low and not changed following induction of cirrhosis, it is likely that the major PLA2 activity measured in liver and kidney corresponds to group II PLA2 enzyme. The mean mRNA ratio of annexin-I/GAPDH was increased in liver tissue by 115% (P < 0.05) but unchanged in kidney tissue following induction of cirrhosis. The protein content of annexin-I and -V were not affected by bile duct excision in liver and kidney tissue indicating that upregulation of group II PLA2 activity was not due to downregulation of annexin-I or -V. Group II PLA2 activity of glomerular mesangial cells stimulated by interleukin-1 beta was enhanced by bile juice and various bile salts. In conclusion, activity of group II PLA2 is upregulated partly due to enhanced transcription and translation in cirrhosis and is furthermore augmented by elevated levels of bile salts.
Phytomedicine | 2012
Zahra Ashkavand; Hassan Malekinejad; A. Amniattalab; A. Rezaei-Golmisheh; Bannikuppe S. Vishwanath
Silymarin (SMN) is used as an antioxidant complex to attenuate the pro-oxidant effects of toxic agents. This study was carried out to investigate the effect of SMN, Celecoxib (CLX) individually and in combination on monoiodoacetate (MIA)-induced osteoarthritis (OA) in rat. Forty adult Wistar rats were assigned to control and test groups. Animals in the test group following OA induction were subdivided into 4 subgroups according to the treatment profile: OA(+); received saline normal (5ml/kg, b.w.), OA(+)CLX(+); received CLX (100mg/kg, orally), OA(+)SMN(+), received SMN (50mg/kg, orally), and OA(+)CLX(+)SMN(+), received both CLX and SMN. The animals received test compounds by gastric gavage for 14 consecutive days. Animals in the OA(+) group showed a significant (p<0.01) increase in serum and synovial levels of IL-1β, while both test compounds reduced the IL-1β level. Both CLX and SMN lowered the OA-increased level of malondialdehyde by 77% and 79% and nitric oxide by 73% and 76%, respectively, in the synovial tissue. Special safranin O (SO) histopathological staining revealed that CLX and SMN improved the MIA-induced destruction and fibrillation in cartilage surface. CLX and SMN regulated the MIA-up regulated IL-1β at mRNA level. The combination therapy resulted in an additive effect between CLX and SMN in biochemical, histopathological and molecular assays. These findings suggest that SMN exerts anti-inflammatory effect and also potentiates the anti-inflammatory effect of CLX on MIA-induced OA. The anti-inflammatory property of SMN may attribute to its antioxidant capacity, which affects the proinflammatory mediators at translational and transcriptional level.
Thrombosis Research | 2010
Holenarasipura V. Shivaprasad; Rajesh Rajaiah; Brigitte M. Frey; Felix J. Frey; Bannikuppe S. Vishwanath
Pergularain e I, a cysteine protease with thrombin-like activity, was purified by ion exchange chromatography from the latex of Pergularia extensa. Its homogeneity was characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), native PAGE and reverse-phase high-performance liquid chromatography (RP-HPLC). The molecular mass of pergularain e I by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) was found to be 23.356 kDa and the N-terminal sequence is L-P-H-D-V-E. Pergularain e I is a glycoprotein containing approximately 20% of carbohydrate. Pergularain e I constituted 6.7% of the total protein with a specific activity of 9.5 units/mg/min with a 2.11-fold increased purity. Proteolytic activity of the pergularain e I was completely inhibited by iodoacetic acid (IAA). Pergularain e I exhibited procoagulant activity with citrated plasma and fibrinogen similar to thrombin. Pergularain e I increases the absorbance of fibrinogen solution in concentration-dependent and time-dependent manner. At 10 microg concentration, an absorbance of 0.48 was reached within 10 min of incubation time. Similar absorbance was observed when 0.2 NIH units of thrombin were used. Thrombin-like activity of pergularain e I is because of the selective hydrolysis of A alpha and B beta chains of fibrinogen and gamma-chain was observed to be insusceptible to hydrolysis. Molecular masses of the two peptide fragments released from fibrinogen due to the hydrolysis by pergularain e I at 5-min incubation time were found to be 1537.21 and 1553.29 and were in close agreement with the molecular masses of 16 amino acid sequence of fibrinopeptide A and 14 amino acid sequence of fibrinopeptide B, respectively. Prolonged fibrinogen-pergularain e I incubation releases additional peptides and their sequence comparison of molecular masses of the released peptides suggested that pergularain e I hydrolyzes specifically after arginine residues.
Phytotherapy Research | 2010
Faiyaz Ahmed; Jalahalli M. Siddesha; Asna Urooj; Bannikuppe S. Vishwanath
The present study evaluated the radical scavenging and angiotensin converting enzyme (ACE) inhibitory activity of cold and hot aqueous extracts of Ficus racemosa (Moraceae) stem bark. The extracts were standardized using HPLC. Radical scavenging activity was determined using 1,1‐diphenyl‐2‐picrylhydrazyl radical and angiotensin converting enzyme inhibitory activity using rabbit lung and partially purified porcine kidney ACE. HPLC profiles of cold aqueous extract (FRC) showed the presence of bergenin, an isocoumarin, while hot aqueous extract (FRH) was found to contain ferulic acid, kaempferol and coumarin in addition to bergenin. FRH showed significantly higher (p ≤ 0.01) radical scavenging activity than FRC and butylated hydroxytoluene (BHT), consequently resulting in a significantly lower (p ≤ 0.01) IC50 value than FRC and BHT. Both the extracts exhibited a dose dependent inhibition of porcine kidney and rabbit lung ACE. FRH showed significantly higher (p ≤ 0.01) activity than FRC with lower IC50 values of 1.36 and 1.91 μg/mL respectively, for porcine kidney and rabbit lung ACE, compared with those of FRC (128 and 291 μg/mL). Further, a significant correlation (r = 0.893; p ≤ 0.05) was observed between radical scavenging activity and ACE‐inhibitory activity. This is the first report on the ACE‐inhibitory activity of F. racemosa stem bark suggesting its potential to be utilized as a therapeutic alternative for hypertension. Copyright
Molecular and Cellular Biochemistry | 2005
Noor Mohamed Jameel; Brigitte M. Frey; Felix J. Frey; T. Veerabasappa Gowda; Bannikuppe S. Vishwanath
Bilirubin is a powerful antioxidant that suppresses the inflammatory process. However its interaction with proinflammatory PLA2 enzyme is not known. Inhibition of several secretory phospholipase A2 (sPLA2) enzyme activities by bilirubin was studied using 14C-oleate labeled Escherichia coli as substrate. Bilirubin inhibits purified sPLA2 enzyme from Vipera russellii and Naja naja venom and partially purified sPLA2 enzymes from human ascitic fluid, pleural fluid and normal serum in a dose dependent manner. IC50 values calculated for these enzymes ranges from 1.75 to 10.5 μM. Inflammatory human sPLA2 enzymes are more sensitive to inhibition by bilirubin than snake venom sPLA2s. Inhibition of sPLA2 activity by bilirubin is independent of calcium concentration. Increasing substrate concentration (upto 180 nmol) did not relieve the inhibition of sPLA2 by bilirubin and it is irreversible. Bilirubin quenched the relative fluorescence intensity of sPLA2 in a dose dependent manner in the same concentration range at which in vitro sPLA2 inhibition was observed. In the presence of bilirubin, apparent shift in the far UV-CD spectra of sPLA2 was observed, indicating a direct interaction with the enzyme. Inhibition of sPLA2 induced mouse paw edema by bilirubin confirms its sPLA2 inhibitory activity in vivo also. These findings indicate that inhibition of sPLA2 by bilirubin is mediated by direct interaction with the enzyme and bilirubin may act as an endogenous regulator of sPLA2 enzyme activity.