Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bansidhar Datta is active.

Publication


Featured researches published by Bansidhar Datta.


Biochimie | 2001

Protection of translation initiation factor eIF2 phosphorylation correlates with eIF2-associated glycoprotein p67 levels and requires the lysine-rich domain I of p67.

Rekha Datta; Papiya Choudhury; Mahasweta Bhattacharya; Frank Soto Leon; You Zhou; Bansidhar Datta

The rate of protein synthesis in mammals is largely regulated by phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 (eIF2) that is modulated by the cellular glycoprotein, p67, due to its protection of eIF2alpha phosphorylation (POEP) activity. At the N-terminus of p67, there are three unique domains, and at the C-terminus there is a conserved amino acid sequence. To analyze the importance of these domains, C-terminal deletion mutants of rat p67 were expressed constitutively in KRC-7 cells. In these cells, the phosphorylation level of the alpha-subunit of eIF2 was determined, and it was found that expression of the 1-97 amino acid segment of rat p67 increases POEP activity in vivo, and induces the endogenous levels of p67. These cells also show increased growth rate, and efficient translation of chloramphenicol acetyltransferase and beta-galactosidase reporter genes. At the N-terminus of p67, there are two unique domains: a lysine-rich domain I with the sequence (36)KKKRRKKKK(44), and an acidic residue-rich domain with the sequence (77)EEKEKDDDDEDGDGD(91). Substitution of lysine-rich domain I with (36)NMKSGNKTQ(44) in rat recombinant p67 resulted in the inhibition of its POEP activity, and substitution of the acidic residue-rich domain with (77)QNIQKALEPEAGDGA(91), resulted in no inhibition of POEP activity in KRC-7 cells. Taken together, our data suggest that protection of translation initiation factor eIF2 phosphorylation correlates with eIF2-associated glycoprotein p67 levels and requires the lysine-rich domain I of p67.


Biochimica et Biophysica Acta | 2009

Roles of P67/MetAP2 as a tumor suppressor.

Bansidhar Datta

A precise balance between growth promoting signals and growth inhibitory signals plays important roles in the maintenance of healthy mammalian cells. Any deregulation of this critical balance converts normal cells into abnormal or cancerous cells. Several macromolecules are being identified and characterized that are involved in the regulation of cell signaling pathways that connect to the cell cycle and thus they play roles as tumor promoters or tumor suppressors. In situ tumor formation needs active angiogenesis, a process that generates new blood vessels from existing ones either by splitting or sprouting. Several small molecule inhibitors and proteins have been identified as inhibitors of angiogenesis. One such protein, p67/MetAP2 also known as methionine aminopeptidase 2 (MetAP2), has been shown to bind covalently to fumagillin and its derivatives that have anti-angiogenic activity. In addition to fumagillin or its derivatives, several other small molecule inhibitors of p67/MetAP2 have been recently identified and some of these drugs are in phase III trials for cancer therapy. Although molecular details of actions toward tumor suppression by these drugs are largely unknown, a significant progress has been made to understand the structure-function relationship of p67/MetAP2 and its roles in the maintenance of the levels of phosphorylation of the proportional, variant-subunit of eukaryotic initiation factor 2 (eIF2 proportional, variant) and extracellular signal-regulated kinases 1 and 2 (ERK1/2). In this article, roles of p67/MetAP2 in the suppression of cancer development are also discussed.


Experimental Cell Research | 2003

Negative regulation of the protection of eIF2α phosphorylation activity by a unique acidic domain present at the N-terminus of p67

Rekha Datta; Ravinder Tammali; Bansidhar Datta

Eukaryotic initiation factor 2 (eIF2)-associated glycoprotein, p67, has protection of eIF2alpha phosphorylation (POEP) activity, and this activity requires lysine-rich domains I and II of p67. Another unique acidic residue-rich domain is also present at the N-terminus of p67. In this study we analyzed the role of this acidic residue-rich domain in POEP activity. Our data revealed that constitutive expression of a mutant form of p67 (D6/2) in mammalian cells resulted in increased POEP activity, and this activity was partially inhibited when second-site alanine substitutions at the conserved amino acids D251, D262, E364, and E459 were introduced in the D6/2 mutant. In contrast, a similar mutation at the conserved H331 position did not show any effect on POEP activity. Individual alanine substitutions at the above conserved amino acids in wild-type p67 did not show any significant effect on POEP activity except the E459 position where alanine substitution caused approximately 50% increase in POEP activity as compared to the wild type. Although, the levels of endogenous p67 and p67-deglycosylase did not correlate with the POEP activity, we found that the D6/2 mutant of p67 was glycosylated at a higher level in mammalian cells as compared to wild-type p67. The increased POEP activity of the D6/2 mutant also correlated with the higher rate of overall protein synthesis in mammalian cells constitutively expressing this mutant form of p67. Taken together, these data suggest that the acidic residue-rich domain present at the N-terminus of p67 may have a negative role in POEP activity.


Archives of Biochemistry and Biophysics | 2003

Mutation at the acidic residue-rich domain of eukaryotic initiation factor 2 (eIF2α)-associated glycoprotein p67 increases the protection of eIF2α phosphorylation during heat shock

Bansidhar Datta; Rekha Datta

Eukaryotic initiation factor 2 (eIF2)-associated glycoprotein p67 protects eIF2alpha phosphorylation from kinases. The N-terminal lysine-rich domains increase this activity and the acidic residue-rich domain inhibits it. Conserved amino acid residues D251, D262, E364, and E459 are involved in this inhibition. During heat shock, the overall protein synthesis rate decreases due to the increased levels of eIF2alpha phosphorylation. In this study, we examined whether the above inhibition is also found during heat shock. Indeed, the acidic residue-rich domain mutant (D6/2) showed a decreased level of eIF2alpha phosphorylation, and its second-site alanine substitutions at D251, D262, and E459 reversed this effect, whereas second-site alanine substitution at H331 and E364 residues further augmented it. A high-molecular-weight phosphoprotein and at least two faster-migrating phosphoproteins were detected by the monospecific polyclonal antibody against eIF2alpha(P) form in rat tumor hepatoma cells constitutively expressing the double mutant D6/2+D251A. Although the levels of p67 mutants were unaffected during heat shock, those of p67 and p67-deactivating enzyme varied. Furthermore, the overall rate of protein synthesis correlated with the level of eIF2alpha phosphorylation. Taken together, these results suggest that the lysine-rich domains and conserved amino acid residues of p67 are involved in the regulation of eIF2alpha phosphorylation during heat shock.


Biochemistry | 2010

p67/MetAP2 Suppresses K-RasV12-Mediated Transformation of NIH3T3 Mouse Fibroblasts in Culture and in Athymic Mice

Avijit Majumdar; Arnab Ghosh; Samit K. Datta; Bethany C. Prudner; Bansidhar Datta

In many tumor cells, the activation and activity of extracellular signal-regulated kinases (ERK1/2) are very high because of the constitutive activation of the Ras-mediated signaling pathway. Here, we ectopically expressed the human homologue of rat eukaryotic initiation factor 2-associated glycoprotein, p67/MetAP2, in EGF-treated mouse embryonic NIH3T3 fibroblasts and C2C12 myoblasts and NIH3T3 cell lines expressing the constitutively active form of MAP kinase kinase (MEK) to inhibit the activation and activity of ERK1/2 MAP kinases. In addition, we also ectopically expressed rat p67/MetAP2 in oncogenic Ras-induced transformed NIH3T3 fibroblasts and inhibited their transformed phenotype both in culture and in athymic nude mice possibly by inhibiting angiogenesis. This inhibition of ERK1/2 MAP kinases is due to the direct binding with rat p67/MetAP2, and this leads to the inhibition of activity of ERK1/2 MAP kinases both in vitro and in vivo. Furthermore, expression of p67/MetAP2 siRNA in both NIH3T3 fibroblasts and C2C12 myoblasts causes activation and activity of ERK1/2 MAP kinases. Our results thus suggest that ectopic expression of rat p67/MetAP2 in transformed cells can inhibit the tumorigenic phenotype by inhibiting the activation and activity of ERK1/2 MAP kinases and, thus, that p67/MetAP2 has tumor suppression activity.


Journal of Biological Chemistry | 1989

Glycosylation of eukaryotic peptide chain initiation factor 2 (eIF-2)-associated 67-kDa polypeptide (p67) and its possible role in the inhibition of eIF-2 kinase-catalyzed phosphorylation of the eIF-2 alpha-subunit.

Bansidhar Datta; Manas K. Ray; Debopam Chakrabarti; D. E. Wylie; Naba K. Gupta


Proceedings of the National Academy of Sciences of the United States of America | 1988

Roles of a 67-kDa polypeptide in reversal of protein synthesis inhibition in heme-deficient reticulocyte lysate

Bansidhar Datta; Debopam Chakrabarti; Ananda L. Roy; Naba K. Gupta


Biochemistry | 1988

Natural mRNA is required for directing Met-tRNAf binding to 40S ribosomal subunits in animal cells: involvement of Co-eIF-2A in natural mRNA-directed initiation complex formation

Ananda L. Roy; Debopam Chakrabarti; Bansidhar Datta; Ronald E. Hileman; Naba K. Gupta


Biochemistry | 2004

Treatment of Cells with the Angiogenic Inhibitor Fumagillin Results in Increased Stability of Eukaryotic Initiation Factor 2-Associated Glycoprotein, p67, and Reduced Phosphorylation of Extracellular Signal-Regulated Kinases†

Bansidhar Datta; Avijit Majumdar; Rekha Datta; Ramesh Balusu


Biochemistry | 2003

A glycosylation site, 60SGTS63, of p67 is required for its ability to regulate the phosphorylation and activity of Eukaryotic initiation factor 2α

Rekha Datta; Papiya Choudhury; and Arnab Ghosh; Bansidhar Datta

Collaboration


Dive into the Bansidhar Datta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Debopam Chakrabarti

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Naba K. Gupta

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank Soto Leon

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Manas K. Ray

University of Nebraska–Lincoln

View shared research outputs
Researchain Logo
Decentralizing Knowledge