Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Banu Gopalan is active.

Publication


Featured researches published by Banu Gopalan.


The Journal of Neuroscience | 2009

Systemic lipopolysaccharide protects the brain from ischemic injury by reprogramming the response of the brain to stroke: a critical role for IRF3.

Brenda J. Marsh; Susan L. Stevens; Amy E.B. Packard; Banu Gopalan; Brian Hunter; Philberta Y. Leung; Christina A. Harrington; Mary P. Stenzel-Poore

Lipopolysaccharide (LPS) preconditioning provides neuroprotection against subsequent cerebral ischemic injury through activation of its receptor, Toll-like receptor 4 (TLR4). Paradoxically, TLR activation by endogenous ligands after ischemia worsens stroke damage. Here, we define a novel, protective role for TLRs after ischemia in the context of LPS preconditioning. Microarray analysis of brains collected 24 h after stroke revealed a unique set of upregulated genes in LPS-pretreated animals. Promoter analysis of the unique gene set identified an overrepresentation of type I interferon (IFN)-associated transcriptional regulatory elements. This finding suggested the presence of type I IFNs or interferon regulatory factors (IRFs), which upregulate interferon-stimulated genes. Upregulation of IFNβ was confirmed by real-time reverse transcription-PCR. Direct administration of IFNβ intracerebroventricularly at the time of stroke was sufficient for neuroprotection. TLR4 can induce both IFNβ and interferon-stimulated genes through its adapter molecule Toll/interleukin receptor domain-containing adaptor-inducing IFNβ (TRIF) and the IRF3 transcription factor. We show in oxygen glucose deprivation of cortical neurons, an in vitro model of stroke, that activation of TRIF after stroke reduces neuronal death. Furthermore, mice lacking IRF3 were not protected by LPS preconditioning in our in vivo model. Our studies constitute the first demonstration of the neuroprotective capacity of TRIF/IRF3 signaling and suggest that interferon-stimulated genes, whether induced by IFNβ or by enhanced TLR signaling to IRF3, are a potent means of protecting the brain against ischemic damage.


American Journal of Pathology | 2011

Inflammation-induced endothelial-to-mesenchymal transition: a novel mechanism of intestinal fibrosis.

Florian Rieder; Sean P. Kessler; Gail West; Shardul Bhilocha; Carol de la Motte; Tammy Sadler; Banu Gopalan; Eleni Stylianou; Claudio Fiocchi

In addition to mesenchymal cells, endothelial cells may contribute to fibrosis through the process of endothelial-to-mesenchymal transition (EndoMT). We investigated whether human intestinal microvascular endothelial cells (HIMEC) undergo EndoMT and contribute to fibrosis in human and experimental inflammatory bowel disease (IBD). HIMEC were exposed to TGF-β1, IL-1β, and TNF-α or supernatants of lamina propria mononuclear cells (LPMC) and evaluated for morphological, phenotypic, and functional changes compatible with EndoMT. Genomic analysis was used to identify transcription factors involved in the transformation process. Evidence of in situ and in vivo EndoMT was sought in inflamed human and murine intestine. The combination of TGF-β1, IL-1β and TNF-α, or activated LPMC supernatants induced morphological and phenotypic changes consistent with EndoMT with a dominant effect by IL-1. These changes persisted after removal of the inducing agents and were accompanied by functional loss of acetylated LDL-uptake and migratory capacity, and acquisition of de novo collagen synthesis capacity. Sp1 appeared to be the main transcriptional regulator of EndoMT. EndoMT was detected in microvessels of inflammatory bowel disease (IBD) mucosa and experimental colonic fibrosis of Tie2-green fluorescent protein (GFP) reporter-expressing mice. In conclusion, chronic inflammation induces transdifferentiation of intestinal mucosal microvascular cells into mesenchymal cells, suggesting that the intestinal microvasculature contributes to IBD-associated fibrosis through the novel process of EndoMT.


Proceedings of the National Academy of Sciences of the United States of America | 2013

PRMT5 dimethylates R30 of the p65 subunit to activate NF-κB

Han Wei; Benlian Wang; Masaru Miyagi; Yun She; Banu Gopalan; De Bin Huang; Gourisankar Ghosh; George R. Stark; Tao Lu

The ubiquitous inducible transcription factor NF-κB plays central roles in immune and inflammatory responses and in tumorigenesis. Complex posttranslational modifications of the p65 subunit (RelA) are a major aspect of the extremely flexible regulation of NF-κB activity. Although phosphorylation, acetylation, ubiquitination, and lysine methylation of NF-κB have been well described, arginine methylation has not yet been found. We now report that, in response to IL-1β, the p65 subunit of NF-κB is dimethylated on arginine 30 (R30) by protein-arginine methyltransferase 5 (PRMT5). Expression of the R30A and R30K mutants of p65 substantially decreased the ability of NF-κB to bind to κB elements and to drive gene expression. A model in which dimethyl R30 is placed into the crystal structure of p65 predicts new van der Waals contacts that stabilize intraprotein interactions and indirectly increase the affinity of p65 for DNA. PRMT5 was the only arginine methyltransferase that coprecipitated with p65, and its overexpression increased NF-κB activity, whereas PRMT5 knockdown had the opposite effect. Microarray analysis revealed that ∼85% of the NF-κB–inducible genes that are down-regulated by the R30A mutation are similarly down-regulated by knocking PRMT5 down. Many cytokine and chemokine genes are among these, and conditioned media from cells expressing the R30A mutant of p65 had much less NF-κB–inducing activity than media from cells expressing the wild-type protein. PRMT5 is overexpressed in many types of cancer, often to a striking degree, indicating that high levels of this enzyme may promote tumorigenesis, at least in part by facilitating NF-κB-induced gene expression.


Leukemia | 2012

CpG methylation patterns and decitabine treatment response in acute myeloid leukemia cells and normal hematopoietic precursors

Soledad Negrotto; Kwok Peng Ng; Ania Jankowska; Juraj Bodo; Banu Gopalan; Kathryn M Guinta; James C. Mulloy; Eric D. Hsi; Jaroslaw P. Maciejewski; Yogen Saunthararajah

The DNA hypomethylating drug decitabine maintains normal hematopoietic stem cell (HSC) self-renewal but induces terminal differentiation in acute myeloid leukemia (AML) cells. The basis for these contrasting cell fates, and for selective CpG hypomethylation by decitabine, is poorly understood. Promoter CpGs, with methylation measured by microarray, were classified by the direction of methylation change with normal myeloid maturation. In AML cells, the methylation pattern at maturation-responsive CpGs suggested at least partial maturation. Consistent with partial maturation, in gene expression analyses, AML cells expressed high levels of the key lineage-specifying factor CEBPA, but relatively low levels of the key late-differentiation driver CEBPE. In methylation analysis by mass spectrometry, CEBPE promoter CpGs that are usually hypomethylated during granulocyte maturation were significantly hypermethylated in AML cells. Decitabine-induced hypomethylation was greatest at these and other promoter CpGs that are usually hypomethylated with myeloid maturation, accompanied by cellular differentiation of AML cells. In contrast, decitabine-treated normal HSCs retained immature morphology, and methylation significantly decreased at CpGs that are less methylated in immature cells. High expression of lineage-specifying factor and aberrant epigenetic repression of some key late-differentiation driver genes distinguishes AML cells from normal HSCs, and could explain the contrasting differentiation and methylation responses to decitabine.


Reproductive Biology and Endocrinology | 2013

Proteomic analysis of human spermatozoa proteins with oxidative stress

Rakesh K. Sharma; Ashok Agarwal; Gayatri Mohanty; Alaa Hamada; Banu Gopalan; Belinda Willard; Satya Prakash Yadav; Stefan S. du Plessis

BackgroundOxidative stress plays a key role in the etiology of male infertility. Significant alterations in the sperm proteome are associated with poor semen quality. The aim of the present study was to examine if elevated levels of reactive oxygen species cause an alteration in the proteomic profile of spermatozoa.MethodsThis prospective study consisted of 52 subjects: 32 infertile men and 20 normal donors. Seminal ejaculates were classified as ROS+ or ROS- and evaluated for their proteomic profile. Samples were pooled and subjected to LC-MS/MS analysis through in-solution digestion of proteins for peptide characterization. The expression profile of proteins present in human spermatozoa was examined using proteomic and bioinformatic analysis to elucidate the regulatory pathways of oxidative stress.ResultsOf the 74 proteins identified, 10 proteins with a 2-fold difference were overexpressed and 5 were underexpressed in the ROS+ group; energy metabolism and regulation, carbohydrate metabolic processes such as gluconeogenesis and glycolysis, protein modifications and oxidative stress regulation were some of the metabolic processes affected in ROS+ group.ConclusionsWe have identified proteins involved in a variety of functions associated with response and management of oxidative stress. In the present study we focused on proteins that showed a high degree of differential expression and thus, have a greater impact on the fertilizing potential of the spermatozoa. While proteomic analyses identified the potential biomarkers, further studies through Western Blot are necessary to validate the biomarker status of the proteins in pathological conditions.


Reproductive Biology and Endocrinology | 2013

Proteomic analysis of seminal fluid from men exhibiting oxidative stress

Rakesh K. Sharma; Ashok Agarwal; Gayatri Mohanty; Stefan S. du Plessis; Banu Gopalan; Belinda Willard; Satya Prakash Yadav; Edmund Sabanegh

BackgroundSeminal plasma serves as a natural reservoir of antioxidants. It helps to remove excessive formation of reactive oxygen species (ROS) and consequently, reduce oxidative stress. Proteomic profiling of seminal plasma proteins is important to understand the molecular mechanisms underlying oxidative stress and sperm dysfunction in infertile men.MethodsThis prospective study consisted of 52 subjects: 32 infertile men and 20 healthy donors. Once semen and oxidative stress parameters were assessed (ROS, antioxidant concentration and DNA damage), the subjects were categorized into ROS positive (ROS+) or ROS negative (ROS-). Seminal plasma from each group was pooled and subjected to proteomics analysis. In-solution digestion and protein identification with liquid chromatography tandem mass spectrometry (LC-MS/MS), followed by bioinformatics analyses was used to identify and characterize potential biomarker proteins.ResultsA total of 14 proteins were identified in this analysis with 7 of these common and unique proteins were identified in both the ROS+ and ROS- groups through MASCOT and SEQUEST analyses, respectively. Prolactin-induced protein was found to be more abundantly present in men with increased levels of ROS. Gene ontology annotations showed extracellular distribution of proteins with a major role in antioxidative activity and regulatory processes.ConclusionsWe have identified proteins that help protect against oxidative stress and are uniquely present in the seminal plasma of the ROS- men. Men exhibiting high levels of ROS in their seminal ejaculate are likely to exhibit proteins that are either downregulated or oxidatively modified, and these could potentially contribute to male infertility.


The Journal of Pathology | 2013

Gene expression profiling of serrated polyps identifies annexin A10 as a marker of a sessile serrated adenoma/polyp

David Hernandez Gonzalo; Keith Lai; Bonnie Shadrach; John R. Goldblum; Ana E. Bennett; Erinn Downs-Kelly; Xiuli Liu; Walter H. Henricks; Deepa T. Patil; Paula Carver; Jie Na; Banu Gopalan; Lisa Rybicki; Rish K. Pai

Sessile serrated adenomas/polyps (SSA/Ps) are precursors of colon cancer, particularly those that exhibit microsatellite instability. Distinguishing SSA/Ps from the related, but innocuous, microvesicular hyperplastic polyp (MVHP) can be challenging. In this study seven gastrointestinal pathologists reviewed 109 serrated polyps and identified 60 polyps with histological consensus. Microarray analysis was performed on six distal consensus MVHPs < 9 mm, six proximal consensus SSA/Ps > 9 mm, and six normal colon biopsies (three proximal, three distal). Comparative gene expression analysis confirmed the close relationship between SSA/Ps and MVHPs as there was overlapping expression of many genes. However, the gene expression profile in SSA/Ps had stronger and more numerous associations with cancer‐related genes compared with MVHPs. Three genes (TFF2, FABP6, and ANXA10) were identified as candidates whose expression can differentiate SSA/Ps from MVHPs, and the differences in expression were confirmed by quantitative RT‐PCR. As ANXA10 showed the most promise in differentiating these polyps, the expression of ANXA10 was evaluated by immunohistochemistry in consensus SSA/Ps (n = 26), MVHPs (n = 21), and normal colon (n = 9). Immunohistochemical expression of ANXA10 was not identified in separate samples of normal colon or in the normal colonic epithelium adjacent to the serrated polyps. Consistent with the microarray and quantitative RT‐PCR experiments, immunohistochemical expression of ANXA10 was markedly increased in SSA/Ps compared to MVHPs (p < 0.0001). An ANXA10 score ≥ 3 has a sensitivity of 73% and a specificity of 95% in the diagnosis of an SSA/P. In conclusion, we show that SSA/Ps and MVHPs have significant overlap in gene expression, but also important differences, particularly in cancer‐related pathways. Expression of ANXA10 may be a potential marker of the serrated pathway to colon cancer. Copyright


Genome Research | 2012

Unique DNA methylome profiles in CpG island methylator phenotype colon cancers

Yaomin Xu; Bo Hu; Ae Jin Choi; Banu Gopalan; Byron H. Lee; Matthew F. Kalady; James M. Church; Angela H. Ting

A subset of colorectal cancers was postulated to have the CpG island methylator phenotype (CIMP), a higher propensity for CpG island DNA methylation. The validity of CIMP, its molecular basis, and its prognostic value remain highly controversial. Using MBD-isolated genome sequencing, we mapped and compared genome-wide DNA methylation profiles of normal, non-CIMP, and CIMP colon specimens. Multidimensional scaling analysis revealed that each specimen could be clearly classified as normal, non-CIMP, and CIMP, thus signifying that these three groups have distinctly different global methylation patterns. We discovered 3780 sites in various genomic contexts that were hypermethylated in both non-CIMP and CIMP colon cancers when compared with normal colon. An additional 2026 sites were found to be hypermethylated in CIMP tumors only; and importantly, 80% of these sites were located in CpG islands. These data demonstrate on a genome-wide level that the additional hypermethylation seen in CIMP tumors occurs almost exclusively at CpG islands and support definitively that these tumors were appropriately named. When these sites were examined more closely, we found that 25% were adjacent to sites that were also hypermethylated in non-CIMP tumors. Thus, CIMP is also characterized by more extensive methylation of sites that are already prone to be hypermethylated in colon cancer. These observations indicate that CIMP tumors have specific defects in controlling both DNA methylation seeding and spreading and serve as an important first step in delineating molecular mechanisms that control these processes.


Reproductive Biology and Endocrinology | 2013

Functional proteomic analysis of seminal plasma proteins in men with various semen parameters.

Rakesh K. Sharma; Ashok Agarwal; Gayatri Mohanty; Rachel A Jesudasan; Banu Gopalan; Belinda Willard; Satya Prakash Yadav; Edmund Sabanegh

BackgroundAlterations at the molecular level in spermatozoa and seminal plasma can affect male fertility. The objective of this study was to determine if analysis of differential expression of proteins in varying semen parameters can serve as potential biomarkers for male infertility.MethodsThe differential expression of proteins in the seminal plasma of men based on sperm count and morphology were examined utilizing proteomic tools. Subjects were categorized based on sperm concentration and morphology into 4 groups: 1) normal sperm count and normal morphology (NN); 2) normal sperm count and abnormal morphology (NA); 3) oligozoospermia and normal morphology (ON); and 4) oligozoospermia and abnormal morphology (OA). Proteomic analysis was performed by LC-MS/MS followed by functional bioinformatics analysis. Protein distribution in the NA, ON and OA groups was compared with that of the NN group.ResultsTwenty proteins were differentially expressed among the 4 groups. Among the unique proteins identified, 3 were downregulated in the NA group, 1 in the ON group and 1 in the OA group while 2 were upregulated in the ON and OA groups. The functional analysis 1) identified biological regulation as the major processes affected and 2) determined that most of the identified proteins were of extracellular origin.ConclusionsWe have identified proteins that are over-or underexpressed in the seminal plasma of men with poor sperm quality. The distinct presence of some of the proteins may serve as potential biomarkers and provide insight into the mechanistic role played by these proteins in male infertility. Further studies using Western Blot analysis are required to validate these findings.


ieee congress on services | 2007

XOA: Web-Enabled Cross-Ontological Analytics

Roderick M. Riensche; Bob Baddeley; Antonio Sanfilippo; Christian Posse; Banu Gopalan

We describe the development of the cross-ontological analytics (XOA) system, which implements a novel Web-enabled approach for computing similarities across gene and gene products with associated specifications of functional genomic relationships. The XOA system enables biologists to leverage combinations of hierarchical and associative data across multiple subontologies in order to reveal relationships between gene and gene products that might not otherwise be exposed by existing methods of computational analysis. We also provide examples of specific proof-of-concept applications in which XOA has been successfully tested.

Collaboration


Dive into the Banu Gopalan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Sanfilippo

Pacific Northwest National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge