Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bao-Hong Lee is active.

Publication


Featured researches published by Bao-Hong Lee.


Journal of the Science of Food and Agriculture | 2011

Immunomodulatory and antioxidant potential of Lactobacillus exopolysaccharides

Chin-Feng Liu; Kuo-Chuan Tseng; Shen-Shih Chiang; Bao-Hong Lee; Wei-Hsuan Hsu; Tzu-Ming Pan

BACKGROUND Immunomodulation by probiotic microorganisms has become a topic of increasing interest in food microbiology. Polysaccharides are broadly used in the food industry as gelling, thickening, stabilizing, or emulsifying agents. Some probiotics such as lactic acid bacteria also produce exopolysaccharides that stimulate macrophage production of cytokines. The aim of this study was to characterize the effects of exopolysaccharides of Lactobacillus paracasei subsp. paracasei NTU 101 (101EP) and Lactobacillus plantarum NTU 102 (102EP) exopolysaccharides on antioxidant activity and immunomodulation in vitro. RESULTS The sugar composition (including arabinose, galactose, glucose, fructose, mannose, and maltose) of 101EP and 102EP was quantified by high-performance anion-exchange chromatography. Cytokine production (including IL-6, TNF-α, and IL-1β) was induced by 101EP and 102EP in Raw 264.7 in a dose-dependent manner (5-500 µg mL(-1) ). 101EP and 102EP also demonstrated potential antioxidant properties (1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, chelation of ferrous ions, inhibition of linoleic acid peroxidation, and reducing power) in vitro. CONCLUSION 101EP and 102EP stimulate cell proliferation and may be useful as a mild immune modulator of macrophages.


Free Radical Biology and Medicine | 2012

Ankaflavin: a natural novel PPARγ agonist upregulates Nrf2 to attenuate methylglyoxal-induced diabetes in vivo.

Bao-Hong Lee; Wei-Hsuan Hsu; Yu-Ying Chang; Hsuan-Fu Kuo; Ya-Wen Hsu; Tzu-Ming Pan

Ankaflavin (AK) is an active compound having anti-inflammatory, anti-cancer, antiatherosclerotic, and hypolipidemic effects. We have previously reported that AK acts as an antioxidant and antidiabetic drug; however, the mechanism by which AK prevents diabetes remains unknown. Hyperglycemia is associated with protein glycation, which produces advanced glycation end-products (AGEs). Methylglyoxal (MG)-a metabolite of carbohydrates-is believed to cause insulin resistance by inducing inflammation and pancreas damage. In this work, diabetes was induced in Wistar rats (4 weeks of age) by treating them with MG (600 mg/kg bw) for 4 weeks. We observed that AK (10mg/kg bw) exerted peroxisome proliferator-activated receptor-γ (PPARγ) agonist activity, thereby enhancing insulin sensitivity (as indicated by hepatic GLUT2 translocation, PTP1B suppression, and glucose uptake) by downregulating blood glucose and upregulating pancreatic and duodenal homeobox-1 and Maf-A expression and increasing insulin production in MG-induced rats. However, these effects were abolished by the administration of GW9662 (PPARγ antagonist), but the expression of hepatic heme oxygenase-1 (HO-1) and glutamate-cysteine ligase (GCL) was not suppressed in MG-induced rats. Therefore, the nuclear factor erythroid-related factor-2 (Nrf2) activation was investigated. AK did not affect hepatic Nrf2 mRNA or protein expression but significantly increased Nrf2 phosphorylation (serine 40), which was accompanied by increased transcriptional activation of hepatic HO-1 and GCL. These data indicated that AK protected rats from oxidative stress resulting from MG-induced insulin resistance. In contrast, these effects were not detected when the rats were treated with the antidiabetic drug rosiglitazone (10mg/kg bw). Moreover, we found that AK did not inhibit the generation of AGEs in vitro; however, the glutathione (GSH) levels in liver and pancreas of MG-induced rats were elevated in rats administered AK. Therefore, we believe that GSH may lower the MG level, which attenuates the formation of AGEs in the serum, kidney, liver, and pancreas of MG-induced rats. We also found that AK treatment reduced the production of inflammatory factors, such as tumor necrosis factor-α and interleukin-1β. Taken together, the results of our mechanistic study of MG-induced rats suggest that the protective effects of AK against diabetes are mediated by the upregulation of the signaling pathway of Nrf2, which enhances antioxidant activity and serves as a PPARγ agonist to enhance insulin sensitivity.


Journal of Agricultural and Food Chemistry | 2011

Antihypertensive Effects of Lactobacillus-Fermented Milk Orally Administered to Spontaneously Hypertensive Rats

Chin Feng Liu; Yi Ting Tung; Cheng Lun Wu; Bao-Hong Lee; Wei-Hsuan Hsu; Tzu-Ming Pan

Products fermented with lactic acid bacteria may show antihypertensive effects via substances such as angiotensin I-converting enzyme inhibitor (ACEI) and γ-aminobutyric acid (GABA). It was previously found that milk fermented with Lactobacillus paracasei subsp. paracasei NTU 101 (101FM) or Lactobacillus plantarum NTU 102 (102FM) has ACEI and GABA activities. This study aimed to investigate the antihypertensive effects of 101FM and 102FM orally administered to spontaneously hypertensive rats (SHRs). Eight hours after a single oral administration or after 8 weeks of weekly (chronic) administration, 101FM and 102FM significantly decreased systolic and diastolic blood pressures in the SHRs. Microscopic examination of aortic tissue demonstrated that 101FM and 102FM reduced the disorganization of the media layer. These findings suggest that orally administered 101FM and 102FM have antihypertensive effects, possibly via ACEI and GABA activity, in SHRs. Therefore, 101FM and 102FM may be useful ingredients in physiologically functional foods to prevent hypertension.


Food and Chemical Toxicology | 2011

The Monascus metabolite monascin against TNF-α-induced insulin resistance via suppressing PPAR-γ phosphorylation in C2C12 myotubes

Bao-Hong Lee; Wei-Hsuan Hsu; Te-Han Liao; Tzu-Ming Pan

Chronic inflammation in muscle tissue causes insulin resistance and type-2 diabetes. Peroxisome proliferator-activated receptor (PPAR) ligands are reported to activate the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, including pioglitazone, which belong to the thiazolidinedione (TZD). Monascin (MS), a Monascus metabolite, has been reported to exert anti-inflammatory activity in our recent study. Therefore, the alleviating mechanism of MS on tumor necrosis factor-α (TNF-α; 20ng/mL) induced insulin resistance in C2C12 cells was investigated in this study. Results showed that MS increased the uptake of 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-d-glucose (2-NBDG) in C2C12 myotubes. This result was associated with both PPAR-γ activity and PI3K/Akt pathway caused by MS inhibited p-JNK activity and prevented PPAR-γ phosphorylation. Moreover, we found that MS may act a PPAR-γ agonist to improve insulin sensitivity, and this issue was further confirmed by PPAR-γ antagonist (GW9662). Briefly, MS as pioglitazone, stabilized PPAR-γ structure and diminished PPAR-γ phosphorylation thereby improving insulin resistance.


Food and Chemical Toxicology | 2014

Monascin and ankaflavin act as natural AMPK activators with PPARα agonist activity to down-regulate nonalcoholic steatohepatitis in high-fat diet-fed C57BL/6 mice

Wei-Hsuan Hsu; Ting-Hung Chen; Bao-Hong Lee; Ya-Wen Hsu; Tzu-Ming Pan

Yellow pigments monascin (MS) and ankaflavin (AK) are secondary metabolites derived from Monascus-fermented products. The hypolipidemic and anti-inflammatory effects of MS and AK indicate that they have potential on preventing or curing nonalcoholic fatty liver disease (NAFLD). Oleic acid (OA) and high-fat diet were used to induce steatosis in FL83B hepatocytes and NAFLD in mice, respectively. We found that both MS and AK prevented fatty acid accumulation in hepatocytes by inhibiting fatty acid uptake, lipogenesis, and promoting fatty acid beta-oxidation mediated by activating peroxisome proliferator-activated receptor (PPAR)-α and AMP-activated kinase (AMPK). Furthermore, MS and AK significantly attenuated high-fat diet-induced elevation of total cholesterol (TC), triaceylglycerol (TG), free fatty acid (FFA), and low density lipoprotein-cholesterol (LDL-C) in plasma. MS and AK promoted AMPK phosphorylation, suppressed the steatosis-related mRNA expression and inflammatory cytokines secretion, as well as upregulated farnesoid X receptor (FXR), peroxisome proliferator-activated receptor gamma co-activator (PGC)-1α, and PPARα expression to induce fatty acid oxidation in the liver of mice. We provided evidence that MS and AK act as PPARα agonists to upregulate AMPK activity and attenuate NAFLD. MS and AK may be supplied in food supplements or developed as functional foods to reduce the risk of diabetes and obesity.


Food and Chemical Toxicology | 2012

Monascus-fermented metabolite monascin suppresses inflammation via PPAR-γ regulation and JNK inactivation in THP-1 monocytes

Wei-Hsuan Hsu; Bao-Hong Lee; Te-Han Liao; Ya-Wen Hsu; Tzu-Ming Pan

Fermentation products of the fungus Monascus offer valuable therapeutic benefits and have been used extensively for centuries in Asia. The aim of this study is to investigate the inhibitory effect of the Monascus-fermented metabolite monascin (MS) on the molecular mechanism of ovalbumin (OVA)-induced inflammation in the human THP-1 monocyte cell line. We found that 1, 5, and 25 μM of MS significantly attenuated several proinflammatory mediators, including inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression as well as nitric oxide (NO) and prostaglandin E(2) (PGE(2)) formation caused by OVA stimulation. Further, 5 and 25 μM of MS significantly reduced the generation of tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6) at both the protein and mRNA levels. MS (5 and 25 μM) decreased OVA-induced phosphorylation of mitogen-activated protein kinase (MAPK) c-Jun NH(2)-terminal kinase (JNK), but not that of extracellular signal-regulated kinase (ERK) or p38 kinase. We used the peroxisome proliferator activated receptor-γ (PPAR-γ) antagonist GW9662 to show that MS inhibit JNK phosphorylation through increased expression of PPAR-γ. Thus, the metabolites from Monascus fermentation may serve as a dietary source of anti-inflammatory agents.


Toxicology and Applied Pharmacology | 2013

A novel natural Nrf2 activator with PPARγ-agonist (monascin) attenuates the toxicity of methylglyoxal and hyperglycemia.

Wei-Hsuan Hsu; Bao-Hong Lee; Yu-Ying Chang; Ya-Wen Hsu; Tzu-Ming Pan

Methylglyoxal (MG) is a toxic-glucose metabolite and a major precursor of advanced glycation endproducts (AGEs). MG has been reported to result in inflammation by activating receptor for AGEs (RAGE). We recently found that Monascus-fermented metabolite monascin acts as a novel natural peroxisome proliferator-activated receptor-γ (PPARγ) agonist that improves insulin sensitivity. We investigated the metabolic, biochemical, and molecular abnormalities characteristic of type 2 diabetes in MG-treated Wistar rats treated with oral administration of monascin or rosiglitazone. Monascin (a novel PPARγ agonist) activated nuclear factor-erythroid 2-related factor 2 (Nrf2) and down-regulated hyperinsulinmia in oral glucose tolerance test (OGTT). Monascin was able to elevate glyoxalase-1 expression via activation of hepatic Nrf2, hence, resulting in MG metabolism to d-lactic acid and protected from AGEs production in MG-treated rats. Rosiglitazone did not activate Nrf2 nor glyoxalase expression to lower serum and hepatic AGEs levels. Monascin acts as a novel natural Nrf2 activator with PPARγ-agonist activity were confirmed by Nrf2 and PPARγ reporter assays in Hep G2 cells. These findings suggest that monascin acts as an anti-diabetic and anti-oxidative stress agent to a greater degree than rosiglitazone and thus may have therapeutic potential for the prevention of diabetes.


Journal of the Science of Food and Agriculture | 2010

Red mold dioscorea-induced G2/M arrest and apoptosis in human oral cancer cells

Wei-Hsuan Hsu; Bao-Hong Lee; Tzu-Ming Pan

BACKGROUND Monascus-fermented products are among the most commonly used traditional food supplements. Dioscorea is known to exhibit anticancer properties. In this study the effects of the ethanol extract of red mold dioscorea (RMDE) on cell proliferation, cell cycle and apoptosis in human oral cancer cells were investigated. RESULTS RMDE exercised growth inhibition on squamous cell carcinoma-25 (SCC-25) cells. RMDE-mediated G2/M phase arrest was associated with the down-regulation of NF-κB, resulting in the inhibition of cyclin B1 and CDK1 expression; this may be the mechanism by which RMDE inhibits cancer cells. Furthermore, the proapoptotic activity of RMDE was revealed by the Annexin V-FITC/PI double-staining assay. In addition, the proapoptotic effect of RMDE was evident by the inhibition of Bax expression in the mitochondria, resulting in the activation of caspase-9 and caspase-3 and subsequent triggering of the mitochondrial apoptotic pathway. RMDE also enhanced caspase-8 activity, indicating the involvement of the death receptor pathway in RMDE-mediated SCC-25 cell apoptosis. CONCLUSION RMDE treatment inhibited the growth of SCC-25 cells by arresting cell cycle at the G2/M phase and induced apoptosis in a time- and dose-dependent manner. Therefore RMDE may be a good candidate for development as a dietary supplement against oral cancer.


Applied Microbiology and Biotechnology | 2012

Benefit of Monascus-fermented products for hypertension prevention: a review

Bao-Hong Lee; Tzu-Ming Pan

Abstractγ-Aminobutyric acid (GABA) has been reported to play a neurotransmitter in the central nervous system thereby exerting an inhibition in nerve impulse, in turn ameliorating depression; in addition, recent study also reveals the anti-hypertensive effect of GABA in vivo. Edible fungi of the Monascus species have been used as traditional Chinese medicine in eastern Asia for several centuries. Monascus-fermented products possess a number of functional secondary metabolites, including anti-inflammatory pigments (such as monascin and ankaflavin), monacolins, dimerumic acid, and GABA. Several scientific studies have shown that these secondary metabolites have anti-inflammatory, anti-oxidative, and anti-tumor activities. Moreover, many published reports have shown the efficacy of Monascus-fermented products in the prevention or amelioration of some diseases, including hypercholesterolemia, hyperlipidemia, hypertension, diabetes, obesity, Alzheimer’s disease, and numerous types of cancer in recent studies. The current article discusses and provides evidence to elucidate the anti-hypertensive benefit of Monascus-fermented metabolites, including anti-inflammatory pigments and GABA.


Free Radical Biology and Medicine | 2013

Dimerumic acid attenuates receptor for advanced glycation endproducts signal to inhibit inflammation and diabetes mediated by Nrf2 activation and promotes methylglyoxal metabolism into d-lactic acid

Bao-Hong Lee; Wei-Hsuan Hsu; Ya-Wen Hsu; Tzu-Ming Pan

This study was designed to evaluate the effects of dimerumic acid (DMA) on receptor for advanced glycation endproducts (RAGE) signal activation and THP-1 monocyte inflammation treated with S100b, a specific ligand of RAGE. We found that DMA inhibited inflammatory cytokine production via upregulation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and alleviated oxidative stress through attenuation of p47phox translocation to the membrane of S100b-treated THP-1 monocytes. We found that DMA activated Nrf2 mediated by the p38 kinase pathway in THP-1 monocytes. However, anti-inflammatory activity of DMA was attenuated by Nrf2 siRNA treatment. In an animal model, methylglyoxal (MG; 200mg/kg bw) was chosen to induce diabetes in Balb/C mice (6 weeks) in this work. The in vivo verification of anti-inflammation in peripheral blood mononuclear cells by DMA treatment was confirmed by tumor necrosis factor-α and interleukin-1β measurements. Oral glucose tolerance test, insulin tolerance test, hyperinsulinemia, and hyperglycemia were improved in MG-treated mice by DMA treatment and these effects were greater than those of silymarin and N-acetylcysteine. Furthermore, DMA increased hepatic glyoxalase mRNA and glutathione mediated by Nrf2 activation to metabolize MG into d-lactic acid, thereby reducing serum and hepatic AGE levels and suppressing inflammatory factor generation in MG-treated mice. However, DMA did not exert the antiglycation activity in MG-bovine serum albumin incubation. Taken together, the results indicate that DMA is a novel antioxidant and Nrf2 activator that lowers AGE levels and may prove to be an effective treatment for diabetes.

Collaboration


Dive into the Bao-Hong Lee's collaboration.

Top Co-Authors

Avatar

Tzu-Ming Pan

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Wei-Hsuan Hsu

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Ya-Wen Hsu

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Te-Han Liao

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Yu-Ying Chang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Chin-Feng Liu

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Tao Huang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Yu-Chun Huang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Bing-Ying Ho

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Hsuan-Fu Kuo

National Taiwan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge