Bao-Hua Song
University of North Carolina at Charlotte
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bao-Hua Song.
Molecular Biology and Evolution | 2010
Toni I. Gossmann; Bao-Hua Song; Aaron J. Windsor; Thomas Mitchell-Olds; Christopher J. Dixon; Maxim V. Kapralov; Dmitry A. Filatov; Adam Eyre-Walker
The relative contribution of advantageous and neutral mutations to the evolutionary process is a central problem in evolutionary biology. Current estimates suggest that whereas Drosophila, mice, and bacteria have undergone extensive adaptive evolution, hominids show little or no evidence of adaptive evolution in protein-coding sequences. This may be a consequence of differences in effective population size. To study the matter further, we have investigated whether plants show evidence of adaptive evolution using an extension of the McDonald-Kreitman test that explicitly models slightly deleterious mutations by estimating the distribution of fitness effects of new mutations. We apply this method to data from nine pairs of species. Altogether more than 2,400 loci with an average length of approximately 280 nucleotides were analyzed. We observe very similar results in all species; we find little evidence of adaptive amino acid substitution in any comparison except sunflowers. This may be because many plant species have modest effective population sizes.
Science | 2012
Kasavajhala V. S. K. Prasad; Bao-Hua Song; Carrie F. Olson-Manning; Jill T. Anderson; Cheng-Ruei Lee; M. E. Schranz; Aaron J. Windsor; Maria J. Clauss; Antonio J. Manzaneda; I. Naqvi; Michael Reichelt; Jonathan Gershenzon; Sanjeewa G. Rupasinghe; Mary A. Schuler; Thomas Mitchell-Olds
Natural Selection at Work Catching the evolution of a novel function and determining its selective parameters in nature remains an extremely difficult task. Prasad et al. (p. 1081) have undertaken this quest documenting the molecular basis of a natural allelic polymorphism and its effects on herbivory and survival in the Arabidopsis relative, Boechera stricta, living in the Rocky Mountains. Positive selection for a mutation that enhances resistance to herbivory in the model plant Boechera is described. Identification of the causal genes that control complex trait variation remains challenging, limiting our appreciation of the evolutionary processes that influence polymorphisms in nature. We cloned a quantitative trait locus that controls plant defensive chemistry, damage by insect herbivores, survival, and reproduction in the natural environments where this polymorphism evolved. These ecological effects are driven by duplications in the BCMA (branched-chain methionine allocation) loci controlling this variation and by two selectively favored amino acid changes in the glucosinolate-biosynthetic cytochrome P450 proteins that they encode. These changes cause a gain of novel enzyme function, modulated by allelic differences in catalytic rate and gene copy number. Ecological interactions in diverse environments likely contribute to the widespread polymorphism of this biochemical function.
Molecular Ecology | 2005
Bao-Hua Song; Maria J. Clauss; Alan E. Pepper; Thomas Mitchell-Olds
The genus Boechera is a widespread North American group with great potential for studies of ecology and evolution: Boechera is closely related to Arabidopsis and exhibits different ecological and reproductive strategies. Boechera stricta (previously Arabis drummondii) is a morphologically and genetically well‐defined, perennial crucifer species. Fifteen natural populations of diploid individuals from the Rocky Mountains were analysed using 21 microsatellite loci. In accordance with our expectation for this predominately inbreeding species, a high FIS value (0.89) was observed. Furthermore, populations of B. stricta were highly differentiated, as indicated by FST = 0.56. Three clusters were identified using structure— the majority of populations belonged to either the Northern or Southern cluster. Together, the north–south partitioning and evenness of genetic variation across the two clusters suggested multiple refugia for this perennial herb in the Rocky Mountains. Pleistocene glaciation, together with the topographically and climatologically heterogeneous cordillera, has profoundly influenced the genetic architecture of B. stricta. Genetic population structure was also influenced by relatively recent genome admixture at two levels: within species (involving individuals from the Northern and Southern clusters) and between species (with the hybridization of B. stricta and Boechera holboellii). This complexity of population structure at presumably neutral microsatellite loci located throughout the genome in B. stricta provides a baseline against which to test whether functional genetic variation is undergoing local adaptive evolution throughout the natural species range.
Plant Physiology | 2007
M. E. Schranz; Aaron J. Windsor; Bao-Hua Song; Amy Lawton-Rauh; Thomas Mitchell-Olds
The angiosperm family Brassicaceae contains both the research model Arabidopsis (Arabidopsis thaliana) and the agricultural genus Brassica. Comparative genomics in the Brassicaceae has largely focused on direct comparisons between Arabidopsis and the species of interest. However, the reduced genome size and chromosome number (n = 5) of Arabidopsis complicates comparisons. Arabidopsis shows extensive genome and chromosome reshuffling compared to its close relatives Arabidopsis lyrata and Capsella rubella, both with n = 8. To facilitate comparative genomics across the Brassicaceae we recently outlined a system of 24 conserved chromosomal blocks based on their positions in an ancestral karyotype of n = 8, rather than by their position in Arabidopsis. In this report we use this system as a tool to understand genome structure and evolution in Boechera stricta (n = 7). B. stricta is a diploid, sexual, and highly self-fertilizing species occurring in mostly montane regions of western North America. We have created an F2 genetic map of B. stricta based on 192 individuals scored at 196 microsatellite and candidate gene loci. Single-nucleotide polymorphism genotyping of 94 of the loci was done simultaneously using an Illumina bead array. The total map length is 725.8 cM, with an average marker spacing of 3.9 cM. There are no gaps greater than 19.3 cM. The chromosomal reduction from n = 8 to n = 7 and other genomic changes in B. stricta likely involved a pericentric inversion, a chromosomal fusion, and two reciprocal translocations that are easily visualized using the genomic blocks. Our genetic map will facilitate the analysis of ecologically relevant quantitative variation in Boechera.
Molecular Ecology | 2011
Catherine A. Rushworth; Bao-Hua Song; Cheng-Ruei Lee; Thomas Mitchell-Olds
The selection and development of a study system for evolutionary and ecological functional genomics (EEFG) depend on a variety of factors. Here, we present the genus Boechera as an exemplary system with which to address ecological and evolutionary questions. Our focus on Boechera is based on several characteristics as follows: (i) native populations in undisturbed habitats where current environments reflect historical conditions over several thousand years; (ii) functional genomics benefitting from its close relationship to Arabidopsis thaliana; (iii) inbreeding tolerance enabling development of recombinant inbred lines, near‐isogenic lines and positional cloning; (iv) interspecific crosses permitting mapping for genetic analysis of speciation; (v) apomixis (asexual reproduction by seeds) in a genetically tractable diploid; and (vi) broad geographic distribution in North America, permitting ecological genetics for a large research community. These characteristics, along with the current sequencing of three Boechera species by the Joint Genome Institute, position Boechera as a rapidly advancing system for EEFG studies.
Genetics | 2009
Bao-Hua Song; Aaron J. Windsor; Karl Schmid; Sebastian E. Ramos-Onsins; M. Eric Schranz; Andrew J. Heidel; Thomas Mitchell-Olds
Information about polymorphism, population structure, and linkage disequilibrium (LD) is crucial for association studies of complex trait variation. However, most genomewide studies have focused on model systems, with very few analyses of undisturbed natural populations. Here, we sequenced 86 mapped nuclear loci for a sample of 46 genotypes of Boechera stricta and two individuals of B. holboellii, both wild relatives of Arabidopsis. Isolation by distance was significant across the species range of B. stricta, and three geographic groups were identified by structure analysis, principal coordinates analysis, and distance-based phylogeny analyses. The allele frequency spectrum indicated a genomewide deviation from an equilibrium neutral model, with silent nucleotide diversity averaging 0.004. LD decayed rapidly, declining to background levels in ∼10 kb or less. For tightly linked SNPs separated by <1 kb, LD was dependent on the reference population. LD was lower in the specieswide sample than within populations, suggesting that low levels of LD found in inbreeding species such as B. stricta, Arabidopsis thaliana, and barley may result from broad geographic sampling that spans heterogeneous genetic groups. Finally, analyses also showed that inbreeding B. stricta and A. thaliana have ∼45% higher recombination per kilobase than outcrossing A. lyrata.
Sexual Plant Reproduction | 2013
John T. Lovell; Olawale M. Aliyu; Martin Mau; M. E. Schranz; Marcus A. Koch; Christiane Kiefer; Bao-Hua Song; Thomas Mitchell-Olds; Timothy Francis Sharbel
The genetic mechanisms causing seed development by gametophytic apomixis in plants are predominantly unknown. As apomixis is consistently associated with hybridity and polyploidy, these confounding factors may either (a) be the underlying mechanism for the expression of apomixis, or (b) obscure the genetic factors which cause apomixis. To distinguish between these hypotheses, we analyzed the population genetic patterns of diploid and triploid apomictic lineages and their sexual progenitors in the genus Boechera (Brassicaceae). We find that while triploid apomixis is associated with hybridization, the majority of diploid apomictic lineages are likely the product of intra-specific crosses. We then show that these diploid apomicts are more likely to sire triploid apomictic lineages than conspecific sexuals. Combined with flow cytometric seed screen phenotyping for male and female components of apomixis, our analyses demonstrate that hybridization is an indirect correlate of apomixis in Boechera.
Evolutionary Applications | 2017
Hengyou Zhang; Neha Mittal; Larry J. Leamy; Oz Barazani; Bao-Hua Song
Deleterious effects of climate change and human activities, as well as diverse environmental stresses, present critical challenges to food production and the maintenance of natural diversity. These challenges may be met by the development of novel crop varieties with increased biotic or abiotic resistance that enables them to thrive in marginal lands. However, considering the diverse interactions between crops and environmental factors, it is surprising that evolutionary principles have been underexploited in addressing these food and environmental challenges. Compared with domesticated cultivars, crop wild relatives (CWRs) have been challenged in natural environments for thousands of years and maintain a much higher level of genetic diversity. In this review, we highlight the significance of CWRs for crop improvement by providing examples of CWRs that have been used to increase biotic and abiotic stress resistance/tolerance and overall yield in various crop species. We also discuss the surge of advanced biotechnologies, such as next‐generation sequencing technologies and omics, with particular emphasis on how they have facilitated gene discovery in CWRs. We end the review by discussing the available resources and conservation of CWRs, including the urgent need for CWR prioritization and collection to ensure continuous crop improvement for food sustainability.
Molecular Ecology | 2007
Bao-Hua Song; Thomas Mitchell-Olds
Conservation of endangered species becomes a critical issue with the increasing rates of extinction. In this study, we use 13 microsatellite loci and 27 single‐copy nuclear loci to investigate the population genetics of Boechera fecunda, a rare relative of Arabidopsis thaliana, known from only 21 populations in Montana. We investigated levels of genetic diversity and population structure in comparison to its widespread congener, Boechera stricta, which shares similar life history and mating system. Despite its rarity, B. fecunda had levels of genetic diversity similar to B. stricta for both microsatellites and nucleotide polymorphism. Populations of B. fecunda are highly differentiated, with a majority of genetic diversity existing among populations (FST = 0.57). Differences in molecular diversity and allele frequencies between western and eastern population groups suggest they experienced very different evolutionary histories.
Journal of Systematics and Evolution | 2011
Bao-Hua Song; Thomas Mitchell-Olds
Abstract Dissecting evolutionary dynamics of ecologically important traits is a long‐term challenge for biologists. Attempts to understand natural variation and molecular mechanisms have motivated a move from laboratory model systems to non‐model systems in diverse natural environments. Next generation sequencing methods, along with an expansion of genomic resources and tools, have fostered new links between diverse disciplines, including molecular biology, evolution, ecology, and genomics. Great progress has been made in a few non‐model wild plants, such as Arabidopsis relatives, monkey flowers, and wild sunflowers. Until recently, the lack of comprehensive genomic information has limited evolutionary and ecological studies to larger QTL (quantitative trait locus) regions rather than single gene resolution, and has hindered recognition of general patterns of natural variation and local adaptation. Further efforts in accumulating genomic data and developing bioinformatic and biostatistical tools are now poised to move this field forward. Integrative national and international collaborations and research communities are needed to facilitate development in the field of evolutionary and ecological genomics.