Bao-Jun Cai
Shanghai Jiao Tong University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bao-Jun Cai.
Physical Review C | 2009
Lie-Wen Chen; Bao-Jun Cai; Che Ming Ko; Bao-An Li; Chun Shen; Jun Xu
Analytical expressions for the saturation density of asymmetric nuclear matter as well as its binding energy and incompressibility at saturation density are given up to fourth order in the isospin asymmetry
Physical Review C | 2012
Rong Chen; Bao-Jun Cai; Lie-Wen Chen; Bao-An Li; Xiao-Hua Li; Chang Xu
\ensuremath{\delta}=({\ensuremath{\rho}}_{n}\ensuremath{-}{\ensuremath{\rho}}_{p})/\ensuremath{\rho}
Physical Review C | 2015
Bao-Jun Cai; Farrukh J. Fattoyev; Bao-An Li; William G. Newton
using 11 characteristic parameters defined by the density derivatives of the binding energy per nucleon of symmetric nuclear matter, the symmetry energy
Physics Letters B | 2013
Xiao-Hua Li; Bao-Jun Cai; Lie-Wen Chen; Rong Chen; Bao-An Li; Chang Xu
{E}_{\mathrm{sym}} (\ensuremath{\rho})
Physical Review C | 2015
Bao-Jun Cai; Bao-An Li
, and the fourth-order symmetry energy
Progress in Particle and Nuclear Physics | 2018
Bao-An Li; Bao-Jun Cai; Lie-Wen Chen; Jun Xu
{E}_{\mathrm{sym},4}(\ensuremath{\rho})
Physics Letters B | 2016
Bao-Jun Cai; Bao-An Li
at normal nuclear density
Nuclear Science and Techniques | 2016
Bao-An Li; Bao-Jun Cai; Lie-Wen Chen; Xiao-Hua Li
{\ensuremath{\rho}}_{0}
Physical Review C | 2016
Bao-Jun Cai; Bao-An Li; Lie-Wen Chen
. Using an isospin- and momentum-dependent modified Gogny interaction (MDI) and the Skyrme-Hartree-Fock (SHF) approach with 63 popular Skyrme interactions, we have systematically studied the isospin dependence of the saturation properties of asymmetric nuclear matter, particularly the incompressibility
International Journal of Modern Physics E-nuclear Physics | 2010
Lie-Wen Chen; Bao-Jun Cai; Chun Shen; Che Ming Ko; Jun Xu; Bao-An Li
{K}_{\mathrm{sat}}(\ensuremath{\delta})={K}_{0}+{K}_{\mathrm{sat},2}{\ensuremath{\delta}}^{2}+{K}_{\mathrm{sat},4}{\ensuremath{\delta}}^{4}+O({\ensuremath{\delta}}^{6})