Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bao Nguyen is active.

Publication


Featured researches published by Bao Nguyen.


Leukemia | 2013

Mutations of FLT3/ITD confer resistance to multiple tyrosine kinase inhibitors

A B Williams; Bao Nguyen; L Li; Patrick Brown; Mark Levis; D Leahy; D Small

FMS-like tyrosine kinase 3 (FLT3) normally functions in the survival/proliferation of hematopoietic stem/progenitor cells, but its constitutive activation by internal tandem duplication (ITD) mutations correlates with a poor prognosis in AML. The development of FLT3 tyrosine kinase inhibitors (TKI) is a promising strategy, but resistance that arises during the course of treatment caused by secondary mutations within the mutated gene itself poses a significant challenge. In an effort to predict FLT3 resistance mutations that might develop in patients, we used saturation mutagenesis of FLT3/ITD followed by selection of transfected cells in FLT3 TKI. We identified F621L, A627P, F691L and Y842C mutations in FLT3/ITD that confer varying levels of resistance to FLT3 TKI. Western blotting confirmed that some FLT3 TKI were ineffective at inhibiting FLT3 autophosphorylation and signaling through MAP kinase, STAT5 and AKT in some mutants. Balb/c mice transplanted with the FLT3/ITD Y842C mutation confirmed resistance to sorafenib in vivo but not to lestaurtinib. These results indicate a growing number of FLT3 mutations that are likely to be encountered in patients. Such knowledge, combined with known remaining sensitivity to other FLT3 TKI, will be important to establish as secondary drug treatments that can be substituted when these mutants are encountered.


Blood | 2012

Knock-in of a FLT3/ITD mutation cooperates with a NUP98-HOXD13 fusion to generate acute myeloid leukemia in a mouse model

Sarah Greenblatt; Li Li; Christopher Slape; Bao Nguyen; Rachel L. Novak; Amy S. Duffield; David L. Huso; Stephen Desiderio; Michael J. Borowitz; Peter D. Aplan; Donald M. Small

Constitutive activation of FLT3 by internal tandem duplication (ITD) is one of the most common molecular alterations in acute myeloid leukemia (AML). FLT3/ITD mutations have also been observed in myelodysplastic syndrome patients both before and during progression to AML. Previous work has shown that insertion of an FLT3/ITD mutation into the murine Flt3 gene induces a myeloproliferative neoplasm, but not progression to acute leukemia, suggesting that additional cooperating events are required. We therefore combined the FLT3/ITD mutation with a model of myelodysplastic syndrome involving transgenic expression of the Nup98-HoxD13 (NHD13) fusion gene. Mice expressing both the FLT3/ITD and NHD13 transgene developed AML with 100% penetrance and short latency. These leukemias were driven by mutant FLT3 expression and were susceptible to treatment with FLT3 tyrosine kinase inhibitors. We also observed a spontaneous loss of the wild-type Flt3 allele in these AMLs, further modeling the loss of the heterozygosity phenomenon that is seen in human AML with FLT3-activating mutations. Because resistance to FLT3 inhibitors remains an important clinical issue, this model may help identify new molecular targets in collaborative signaling pathways.


Cancer Research | 2006

IMC-EB10, an anti-FLT3 monoclonal antibody, prolongs survival and reduces nonobese diabetic/severe combined immunodeficient engraftment of some acute lymphoblastic leukemia cell lines and primary leukemic samples.

Obdulio Piloto; Bao Nguyen; David L. Huso; Kyu Tae Kim; Yiwen Li; Larry Witte; Daniel J. Hicklin; Patrick O. Brown; Donald M. Small

The class III receptor tyrosine kinase FLT3 is expressed on the blasts of >90% of patients with B-lineage acute lymphoblastic leukemias (ALL). In addition, it is expressed at extremely high levels in ALL patients with mixed lineage leukemia rearrangements or hyperdiploidy and is sometimes mutated in these same patients. In this report, we investigate the effects of treating ALL cell lines and primary samples with human anti-FLT3 monoclonal antibodies (mAb) capable of preventing binding of FLT3 ligand. In vitro studies, examining the ability of two anti-FLT3 mAbs (IMC-EB10 and IMC-NC7) to affect FLT3 activation and downstream signaling in ALL cell lines and primary blasts, yielded variable results. FLT3 phosphorylation was consistently inhibited by IMC-NC7 treatment, but in some cell lines, IMC-EB10 actually stimulated FLT3 activation, possibly as a result of antibody-mediated receptor dimerization. Through antibody-dependent, cell-mediated cytotoxicity, such an antibody could still prove efficacious against leukemia cells in vivo. In fact, IMC-EB10 treatment significantly prolonged survival and/or reduced engraftment of several ALL cell lines and primary ALL samples in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. This occurred even when IMC-EB10 treatment resulted in FLT3 activation in vitro. Moreover, fluorescence-activated cell sorting and PCR analysis of IMC-EB10-treated NOD/SCID mice surviving 150 days post-leukemic cell injection revealed that FLT3 immunotherapy reduced leukemic engraftment below the level of detection in these assays (<0.001%). Furthermore, in vivo IMC-EB10 treatment did not select for resistant cells, because cells surviving IMC-EB10 treatment remain sensitive to IMC-EB10 cytotoxicity upon retransplantation. In vivo studies involving either partial depletion or activation of natural killer (NK) cells show that most of the cytotoxic effect of IMC-EB10 is mediated through NK cells. Therefore, such an antibody, either naked or conjugated to radioactive isotopes or cytotoxic agents, may prove useful in the therapy of infant ALL as well as childhood and adult ALL patients whose blasts typically express FLT3.


Oncogene | 2011

Further activation of FLT3 mutants by FLT3 ligand

Rui Zheng; Emily Bailey; Bao Nguyen; Xiaochuan Yang; Obdulio Piloto; Mark Levis; Donald M. Small

Somatic mutations of FLT3 involving internal tandem duplication (ITD) of the juxtamembrane domain or point mutations in the tyrosine kinase domain (TKD) appear to activate FLT3 in a FLT3 ligand (FL)-independent manner. To determine whether or not FLT3 mutants respond to FL for their activation, a FL-deficient (FL−/−) murine embryo fibroblast (MEF) cell line was established. Expression of FLT3/ITD and FLT3/TKD mutations in FL−/− MEF cells resulted in low levels of constitutive phosphorylation of FLT3. However, a more than fourfold increase of FLT3 autophosphorylation was induced by exogenous FL. Rescue of endogenous FL expression in FL−/− MEF cells expressing FLT3 mutants led to more than a threefold increase of FLT3 phosphorylation. FL addition led to further activation of the FLT3 receptors and enhanced survival and/or decreased apoptosis in leukemia-derived cell lines and primary leukemic cells expressing FLT3 mutations. Functional studies revealed that exogenous FL promoted the colony-forming and recloning abilities of FLT3 mutant transduced primary bone marrow cells derived from FL−/− mice. Endogenous FL contributes in vivo to functional signaling through FLT3 as noted by the decreased survival of FL+/+ITD+/+ mice compared with FL−/−ITD+/+ mice. These data suggest that FL leads to further activation of FLT3 mutants and is especially important in light of recent findings of elevated FL levels in acute myeloid leukemia patients in response to chemotherapy.


Blood | 2012

Fluvastatin inhibits FLT3 glycosylation in human and murine cells and prolongs survival of mice with FLT3/ITD leukemia

Allen B. Williams; Li Li; Bao Nguyen; Patrick Brown; Mark Levis; Donald M. Small

FLT3 is frequently mutated in acute myeloid leukemia (AML), but resistance has limited the benefit of tyrosine kinase inhibitors (TKI). We demonstrate that statins can impair FLT3 glycosylation, thus leading to loss of surface expression and induction of cell death, as well as mitigation of TKI resistance. Immunofluorescence microscopy confirms a reduction in surface localization and an increase in intracellular FLT3/internal tandem duplication (ITD) accumulation. This aberrant localization was associated with increased STAT5 activation but inhibition of both MAPK and AKT phosphorylation. Growth inhibition studies indicate that FLT3/ITD-expressing cells were killed with an IC(50) within a range of 0.2-2μM fluvastatin. Several mechanisms of resistance could be circumvented by fluvastatin treatment. An increase in the IC(50) for inhibition of phosphorylated FLT3/ITD by lestaurtinib caused by exogenous FLT3 ligand, resistance to sorafenib caused by the D835Y or FLT3/ITD N676K mutations, and activation of the IL-3 compensatory pathway were all negated by fluvastatin treatment. Finally, fluvastatin treatment in vivo reduced engraftment of BaF3 FLT3/ITD cells in Balb/c mice. These results demonstrate that statins, a class of drugs already approved by the US Food and Drug Administration, might be repurposed for the management of FLT3 mutant acute myeloid leukemia cases either alone or in conjunction with FLT3 TKI.


Blood | 2017

Pre-clinical studies of gilteritinib, a next-generation FLT3 inhibitor.

Lauren Y. Lee; Daniela Hernandez; Trivikram Rajkhowa; Samuel C. Smith; Jayant Ranganathan Raman; Bao Nguyen; Donald M. Small; Mark Levis

To the editor: FLT3-activating mutations are one of the most frequent genetic aberrations in acute myeloid leukemia (AML).[1][1] Internal tandem duplication (FLT3-ITD) mutations are associated with the worst prognosis, whereas tyrosine kinase domain (FLT3/TKD) mutations have an uncertain prognostic


Blood | 2016

All-trans retinoic acid synergizes with FLT3 inhibition to eliminate FLT3/ITD+ leukemia stem cells in vitro and in vivo

Hayley S. Ma; Sarah Greenblatt; Courtney M Shirley; Amy S. Duffield; Bruner Jk; Li Li; Bao Nguyen; Jung E; Peter D. Aplan; Gabriel Ghiaur; Richard J. Jones; Donald M. Small

FMS-like tyrosine kinase 3 (FLT3)-mutant acute myeloid leukemia (AML) portends a poor prognosis, and ineffective targeting of the leukemic stem cell (LSC) population remains one of several obstacles in treating this disease. All-trans retinoic acid (ATRA) has been used in several clinical trials for the treatment of nonpromyelocytic AML with limited clinical activity observed. FLT3 tyrosine kinase inhibitors (TKIs) used as monotherapy also achieve limited clinical responses and are thus far unable to affect cure rates in AML patients. We explored the efficacy of combining ATRA and FLT3 TKIs to eliminate FLT3/internal tandem duplication (ITD)(+) LSCs. Our studies reveal highly synergistic drug activity, preferentially inducing apoptosis in FLT3/ITD(+) cell lines and patient samples. Colony-forming unit assays further demonstrate decreased clonogenicity of FLT3/ITD(+) cells upon treatment with ATRA and TKI. Most importantly, the drug combination depletes FLT3/ITD(+) LSCs in a genetic mouse model of AML, and prolongs survival of leukemic mice. Furthermore, engraftment of primary FLT3/ITD(+) patient samples is reduced in mice following treatment with FLT3 TKI and ATRA in combination, with evidence of cellular differentiation occurring in vivo. Mechanistically, we provide evidence that the synergism of ATRA and FLT3 TKIs is at least in part due to the observation that FLT3 TKI treatment upregulates the antiapoptotic protein Bcl6, limiting the drugs apoptotic effect. However, cotreatment with ATRA reduces Bcl6 expression to baseline levels through suppression of interleukin-6 receptor signaling. These studies provide evidence of the potential of this drug combination to eliminate FLT3/ITD(+) LSCs and reduce the rate of relapse in AML patients with FLT3 mutations.


Cancer Research | 2014

FLT3 kinase inhibitor TTT-3002 overcomes both activating and drug resistance mutations in FLT3 in acute myeloid leukemia

Hayley S. Ma; Bao Nguyen; Amy S. Duffield; Li Li; Allison Galanis; Allen B. Williams; Patrick Brown; Mark Levis; Daniel J. Leahy; Donald M. Small

There have been a number of clinical trials testing the efficacy of FMS-like tyrosine kinase-3 (FLT3) tyrosine kinase inhibitors (TKI) in patients with acute myeloid leukemia (AML) harboring a constitutively activating mutation in FLT3. However, there has been limited efficacy, most often because of inadequate achievement of FLT3 inhibition through a variety of mechanisms. In a previous study, TTT-3002 was identified as a novel FLT3 inhibitor with the most potent activity to date against FLT3 internal tandem duplication (FLT3/ITD) mutations. Here, the activity of TTT-3002 is demonstrated against a broad spectrum of FLT3-activating point mutations, including the most frequently occurring D835 mutations. The compound is also active against a number of point mutations selected for in FLT3/ITD alleles that confer resistance to other TKIs, including the F691L gatekeeper mutation. TTT-3002 maintains activity against patients with relapsed AML samples that are resistant to sorafenib and AC220. Studies utilizing human plasma samples from healthy donors and patients with AML indicate that TTT-3002 is only moderately protein bound compared with several other TKIs currently in clinical trials. Tumor burden of mice in a FLT3 TKI-resistant transplant model is significantly improved by oral dosing of TTT-3002. Therefore, TTT-3002 has demonstrated preclinical potential as a promising new FLT3 TKI that may overcome some of the limitations of other TKIs in the treatment of FLT3-mutant AML. Cancer Res; 74(18); 5206-17. ©2014 AACR.


Blood | 2014

TTT-3002 is a novel FLT3 tyrosine kinase inhibitor with activity against FLT3-associated leukemias in vitro and in vivo

Hayley Ma; Bao Nguyen; Li Li; Sarah Greenblatt; Allen B. Williams; Ming Zhao; Mark Levis; Michelle A. Rudek; Amy S. Duffield; Donald M. Small

More than 35% of acute myeloid leukemia (AML) patients harbor a constitutively activating mutation in FMS-like tyrosine kinase-3 (FLT3). The most common type, internal tandem duplication (ITD), confers poor prognosis. We report for the first time on TTT-3002, a tyrosine kinase inhibitor (TKI) that is one of the most potent FLT3 inhibitors discovered to date. Studies using human FLT3/ITD mutant leukemia cell lines revealed the half maximal inhibitory concentration (IC50) for inhibiting FLT3 autophosphorylation is from 100 to 250 pM. The proliferation IC50 for TTT-3002 in these same cells was from 490 to 920 pM. TTT-3002 also showed potent activity when tested against the most frequently occurring FLT3-activating point mutation, FLT3/D835Y, against which many current TKIs are ineffective. These findings were validated in vivo by using mouse models of FLT3-associated AML. Survival and tumor burden of mice in several FLT3/ITD transplantation models is significantly improved by administration of TTT-3002 via oral dosing. Finally, we demonstrated that TTT-3002 is cytotoxic to leukemic blasts isolated from FLT3/ITD-expressing AML patients, while displaying minimal toxicity to normal hematopoietic stem/progenitor cells from healthy blood and bone marrow donors. Therefore, TTT-3002 has demonstrated preclinical potential as a promising new FLT3 TKI in the treatment of FLT3-mutant AML.


Oncotarget | 2017

FLT3 activating mutations display differential sensitivity to multiple tyrosine kinase inhibitors

Bao Nguyen; Allen B. Williams; David J. Young; Hayley Ma; Li Li; Mark Levis; Patrick O. Brown; Donald M. Small

Fms -like tyrosine kinase-3 (FLT3) is a receptor tyrosine kinase that normally functions in hematopoietic cell survival, proliferation and differentiation. Constitutively activating mutations of FLT3 map predominately to the juxtamembrane domain (internal tandem duplications; ITD) or the activation loop (AL) of the kinase domain and are detected in about 1/3 of de novo acute myeloid leukemia (AML) patients. Small molecule tyrosine kinase inhibitors (TKI) effectively target FLT3/ITD mutations, but some activating mutations, particularly those on the AL, are relatively resistant to many FLT3 TKI. We reproduced many of the AL or other non-ITD activating mutations and tested 13 FLT3 TKI for their activity against these and wild-type FLT3. All 13 TKI tested inhibited BaF3/ITD cell proliferation in a concentration-dependent manner as reported, but most TKI exhibited a wide range of differential activity against AL and other point mutants. Western blotting results examining inhibition of FLT3 autophosphorylation and signaling pathways indicate that many AL mutations reduce TKI binding. Most FLT3 TKI effectively target wild-type FLT3 signaling. As a demonstration of this differential activity, treatment of BaF3 D835Y cells transplanted in BALB/c mice with sorafenib showed no effect in vivo against this mutant whereas lestaurtinib proved effective at reducing disease burden. Thus, while FLT3 TKI have been selected based on their ability to inhibit FLT3/ITD, the selection of appropriate TKI for AML patients with FLT3 AL and other activating point mutations requires personalized consideration.

Collaboration


Dive into the Bao Nguyen's collaboration.

Top Co-Authors

Avatar

Donald M. Small

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Li Li

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Mark Levis

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah Greenblatt

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

David L. Huso

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Patrick Brown

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Obdulio Piloto

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Allen B. Williams

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge