Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bao Qiu is active.

Publication


Featured researches published by Bao Qiu.


Nature Communications | 2016

Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries

Bao Qiu; Minghao Zhang; Lijun Wu; Jun Wang; Yonggao Xia; Danna Qian; Haodong Liu; Sunny Hy; Yan Chen; Ke An; Yimei Zhu; Zhaoping Liu; Ying Shirley Meng

Lattice oxygen can play an intriguing role in electrochemical processes, not only maintaining structural stability, but also influencing electron and ion transport properties in high-capacity oxide cathode materials for Li-ion batteries. Here, we report the design of a gas–solid interface reaction to achieve delicate control of oxygen activity through uniformly creating oxygen vacancies without affecting structural integrity of Li-rich layered oxides. Theoretical calculations and experimental characterizations demonstrate that oxygen vacancies provide a favourable ionic diffusion environment in the bulk and significantly suppress gas release from the surface. The target material is achievable in delivering a discharge capacity as high as 301 mAh g−1 with initial Coulombic efficiency of 93.2%. After 100 cycles, a reversible capacity of 300 mAh g−1 still remains without any obvious decay in voltage. This study sheds light on the comprehensive design and control of oxygen activity in transition-metal-oxide systems for next-generation Li-ion batteries.


ACS Applied Materials & Interfaces | 2016

Morphological Evolution of High-Voltage Spinel LiNi0.5Mn1.5O4 Cathode Materials for Lithium-Ion Batteries: The Critical Effects of Surface Orientations and Particle Size

Haidong Liu; Jun Wang; Xiaofei Zhang; Dong Zhou; Xin Qi; Bao Qiu; Jianhui Fang; Richard Kloepsch; Gerhard Schumacher; Zhaoping Liu; Jie Li

An evolution panorama of morphology and surface orientation of high-voltage spinel LiNi(0.5)Mn(1.5)O4 cathode materials synthesized by the combination of the microwave-assisted hydrothermal technique and a postcalcination process is presented. Nanoparticles, octahedral and truncated octahedral particles with different preferential growth of surface orientations are obtained. The structures of different materials are studied by X-ray diffraction (XRD), Raman spectroscopy, X-ray absorption near edge spectroscopy (XANES), and transmission electron microscopy (TEM). The influence of various morphologies (including surface orientations and particle size) on kinetic parameters, such as electronic conductivity and Li(+) diffusion coefficients, are investigated as well. Moreover, electrochemical measurements indicate that the morphological differences result in divergent rate capabilities and cycling performances. They reveal that appropriate surface-tailoring can satisfy simultaneously the compatibility of power capability and long cycle life. The morphology design for optimizing Li(+) transport and interfacial stability is very important for high-voltage spinel material. Overall, the crystal chemistry, kinetics and electrochemical performance of the present study on various morphologies of LiNi(0.5)Mn(1.5)O4 spinel materials have implications for understanding the complex impacts of electrode interface and electrolyte and rational design of rechargeable electrode materials for lithium-ion batteries. The outstanding performance of our truncated octahedral LiNi(0.5)Mn(1.5)O4 materials makes them promising as cathode materials to develop long-life, high energy and high power lithium-ion batteries.


ACS Applied Materials & Interfaces | 2014

Enhanced Electrochemical Performance with Surface Coating by Reactive Magnetron Sputtering on Lithium-Rich Layered Oxide Electrodes

Bao Qiu; Jun Wang; Yonggao Xia; Zhen Wei; Shaojie Han; Zhaoping Liu

Electrode films fabricated with lithium-rich layered 0.3Li2MnO3-0.7LiNi5/21Co5/21Mn11/21O2 cathode materials have been successfully modified with ZnO coatings via a reactive magnetron sputtering (RMS) process for the first time. The morphology and chemical composition of coating films on the electrodes have been in deep investigated by transmission electron microscopy (TEM), energy dispersive spectrometry (EDS), and X-ray photoelectron spectroscopy (XPS) characterizations. The results clearly demonstrate that ZnO film coatings are ultrathin, dense, uniform, and fully covered on the electrodes. The RMS-2 min (deposition time) coated electrode exhibits much higher initial discharge capacity and coulombic efficiency with 316.0 mAh g(-1) and 89.1% than that of the pristine electrode with 283.4 mAh g(-1) and 81.7%. In addition, the discharge capacity also reaches 256.7 and 187.5 mAh g(-1) at 0.1 and 1.0 C-rate, as compared to that of 238.4 and 157.8 mAh g(-1) after 50 cycles. The improved electrochemical performances of RMS-coated electrodes are ascribed to the high-quality ZnO film coatings that reduce charge transfer resistance and effectively protect active material from electrolyte oxidation.


ACS Nano | 2017

Self-Templating Construction of 3D Hierarchical Macro-/Mesoporous Silicon from 0D Silica Nanoparticles

Xiuxia Zuo; Yonggao Xia; Qing Ji; Xiang Gao; Shanshan Yin; Meimei Wang; Xiaoyan Wang; Bao Qiu; Anxiang Wei; Zaicheng Sun; Zhaoping Liu; Jin Zhu; Ya-Jun Cheng

Porous silicon has found wide applications in many different fields including catalysis and lithium-ion batteries. Three-dimensional hierarchical macro-/mesoporous silicon is synthesized from zero-dimensional Stöber silica particles through a facile and scalable magnesiothermic reduction process. By systematic structure characterization of the macro-/mesoporous silicon, a self-templating mechanism governing the formation of the porous silicon is proposed. Applications as lithium-ion battery anode and photocatalytic hydrogen evolution catalyst are demonstrated. It is found that the macro-/mesoporous silicon shows significantly improved cyclic and rate performance over the commercial nanosized and micrometer-sized silicon particles. After 300 cycles at 0.2 A g-1, the reversible specific capacity is still retained as much as 959 mAh g-1 with a high mass loading density of 1.4 mg cm-2. With the large current density of 2 A g-1, a reversible capacity of 632 mAh g-1 is exhibited. The coexistence of both macro- and mesoporous structures is responsible for the enhanced performance. The macro-/mesoporous silicon also shows superior catalytic performance for photocatalytic hydrogen evolution compared to the silicon nanoparticles.


Journal of Materials Chemistry | 2015

A comparative study on the oxidation state of lattice oxygen among Li1.14Ni0.136Co0.136Mn0.544O2, Li2MnO3, LiNi0.5Co0.2Mn0.3O2 and LiCoO2 for the initial charge–discharge

Shaojie Han; Yonggao Xia; Zhen Wei; Bao Qiu; Lingchao Pan; Qingwen Gu; Zhaoping Liu; Zhiyong Guo

The Li-rich layered oxides are attractive electrode materials due to their high reversible specific capacity (>250 mA h g−1); however, the origin of their abnormal capacity is still ambiguous. In order to elucidate this curious anomaly, we compare the lattice oxygen oxidation states among the Li-rich layered oxide Li1.14Ni0.136Co0.136Mn0.544O2, Li2MnO3 and LiNi0.5Co0.2Mn0.3O2, the two components in Li-rich layered oxides, and the most common layered oxide LiCoO2 before and after initial charge–discharge. For simplicity, we employ chemical treatments of NO2BF4 and LiI acetonitrile solutions to simulate the electrochemical delithiation and lithiation processes. X-ray photoelectron spectroscopy (XPS) studies reveal that part of lattice oxygen in Li1.14Ni0.136Co0.136Mn0.544O2 and Li2MnO3 undergoes a reversible redox process (possibly O2− ↔ O22−), while this does not occur in LiNi0.5Co0.2Mn0.3O2 and LiCoO2. This indicates that the extra capacity of Li-rich layered oxides can be attributed to the reversible redox processes of oxygen in the Li2MnO3 component. Thermogravimetric analysis (TGA) further suggests that the formed O22− species in the delithiated Li1.14Ni0.136Co0.136Mn0.544O2 can decompose into O2 at about 210 °C. This phenomenon demonstrates a competitive relationship between extra capacity and thermal stability, which presents a big challenge for the practical applications of these materials.


Chemistry: A European Journal | 2015

Eliminating Voltage Decay of Lithium‐Rich Li1.14Mn0.54Ni0.14Co0.14O2 Cathodes by Controlling the Electrochemical Process

Zhen Wei; Wei Zhang; Feng Wang; Qian Zhang; Bao Qiu; Shaojie Han; Yonggao Xia; Yimei Zhu; Zhaoping Liu

A lithium-rich cathode material Li1.14 Mn0.54 Ni0.14 Co0.14 O2 (LNMCO) is prepared by a co-precipitation method. The issue of voltage decay in long-term cycling is largely eliminated by control of the charge-discharge voltage range. The LNMCO material exhibits 9.8 % decay in discharge voltage over 200 cycles between 2.0-4.6 V, during which the working voltage decays significantly, from 3.57 V to 3.22 V. The decay was decelerated by a factor of six by using a voltage window of 2.0-4.4 V, from 3.53 V to 3.47 V. IR and Raman spectra reveal that the transformation of layered structure to spinel is significantly retarded under 2.0-4.4 V cycling conditions. Transmission electron microscopy (TEM) was also applied for examining phase change in an individual particle during cycling, showing that the spinel phase occurs both at 2.0-4.6 V and at 2.0-4.4 V, but is not dominant in the latter. Normalization of Li can remove the additional impact on the voltage decay which is brought by different amounts of Li intercalation. The mechanism of no voltage decay at 2.0-4.4 V cycling is raised and electrochemical impedance spectrum data also support the hypothesis.


Journal of Materials Chemistry | 2016

A 3D porous Li-rich cathode material with an in situ modified surface for high performance lithium ion batteries with reduced voltage decay

Xin He; Jun Wang; Rui Wang; Bao Qiu; Henrich Frielinghaus; Philip Niehoff; Haidong Liu; Marian Cristian Stan; Elie Paillard; Martin Winter; Jie Li

High crystallinity Li-rich porous materials integrated with an in situ formed surface containing carbonaceous compounds are synthesized through a facile approach. The rationally designed procedure involves the formation of a specific morphology of a hydroxide precursor assisted by a self-made template and subsequent high temperature treatment to obtain a Li1.2Mn0.56Ni0.16Co0.08O2 target product. The porous morphology is investigated using field-emission scanning electron microscopy and its surface area is quantitatively examined by gas sorption analysis coupled with the Brunauer–Emmett–Teller method. The crystallinity is characterized by X-ray diffraction and high-resolution transmission electron microscopy. X-ray photoelectron spectroscopy, CHN elemental analysis and small angle neutron scattering confirm the presence of carbonaceous compounds in the surface composition. The prepared material exhibits superior discharge rate capability and excellent cycling stability. It shows minor capacity loss after 100 cycles at 0.5C and retains 94.9% of its initial capacity after 500 cycles at 2C. Even more notably, the “voltage decay” during cycling is also significantly decreased. It has been found that carbonaceous compounds play a critical role in reducing the layered to spinel structural transformation during cycling. Therefore, the present porous Li-rich material with surface modified carbonaceous compounds represents an attractive material for advanced lithium-ion batteries.


ACS Applied Materials & Interfaces | 2014

Green facile scalable synthesis of titania/carbon nanocomposites: new use of old dental resins.

Ying Xiao; Xiaoyan Wang; Yonggao Xia; Yuan Yao; Ezzeldin Metwalli; Qian Zhang; Rui Liu; Bao Qiu; Majid Rasool; Zhaoping Liu; Jianqiang Meng; Ling-Dong Sun; Chun-Hua Yan; Peter Müller-Buschbaum; Ya-Jun Cheng

A green facile scalable method inspired by polymeric dental restorative composite is developed to synthesize TiO2/carbon nanocomposites for manipulation of the intercalation potential of TiO2 as lithium-ion battery anode. Poorly crystallized TiO2 nanoparticles with average sizes of 4-6 nm are homogeneously embedded in carbon matrix with the TiO2 mass content varied between 28 and 65%. Characteristic discharge/charge plateaus of TiO2 are significantly diminished and voltage continues to change along with proceeding discharge/charge process. The tap density, gravimetric and volumetric capacities, and cyclic and rate performance of the TiO2/C composites are effectively improved.


ACS Applied Materials & Interfaces | 2017

Synthesis of Three-Dimensional Nanoporous Li-Rich Layered Cathode Oxides for High Volumetric and Power Energy Density Lithium-Ion Batteries

Bao Qiu; Chong Yin; Yonggao Xia; Zhaoping Liu

As rechargeable Li-ion batteries have expanded their applications into on-board energy storage for electric vehicles, the energy and power must be increased to meet the new demands. Li-rich layered oxides are one of the most promising candidate materials; however, it is very difficult to make them compatible with high volumetric energy density and power density. Here, we develop an innovative approach to synthesize three-dimensional (3D) nanoporous Li-rich layered oxides Li[Li0.144Ni0.136Co0.136Mn0.544]O2, directly occurring at deep chemical delithiation with carbon dioxide. It is found that the as-prepared material presents a micrometer-sized spherical structure that is typically composed of interconnected nanosized subunits with narrow distributed pores at 3.6 nm. As a result, this unique 3D micro-/nanostructure not only has a high tap density over 2.20 g cm-3 but also exhibits excellent rate capability (197.6 mA h g-1 at 1250 mA g-1) as an electrode. The excellent electrochemical performance is ascribed to the unique nanoporous micro-nanostructures, which facilitates the Li+ diffusion and enhances the structural stability of the Li-rich layered cathode materials. Our work offers a comprehensive designing strategy to construct 3D nanoporous Li-rich layered oxides for both high volumetric energy density and power density in Li-ion batteries.


ACS Applied Materials & Interfaces | 2016

Silicon Oxycarbide/Carbon Nanohybrids with Tiny Silicon Oxycarbide Particles Embedded in Free Carbon Matrix Based on Photoactive Dental Methacrylates

Meimei Wang; Yonggao Xia; Xiaoyan Wang; Ying Xiao; Rui Liu; Qiang Wu; Bao Qiu; Ezzeldin Metwalli; Senlin Xia; Yuan Yao; Guoxin Chen; Yan Liu; Zhaoping Liu; Jianqiang Meng; Zhaohui Yang; Ling-Dong Sun; Chun-Hua Yan; Peter Müller-Buschbaum; Jing Pan; Ya-Jun Cheng

A new facile scalable method has been developed to synthesize silicon oxycarbide (SiOC)/carbon nanohybrids using difunctional dental methacrylate monomers as solvent and carbon source and the silane coupling agent as the precursor for SiOC. The content (from 100% to 40% by mass) and structure (ratio of disordered carbon over ordered carbon) of the free carbon matrix have been systematically tuned by varying the mass ratio of methacryloxypropyltrimethoxysilane (MPTMS) over the total mass of the resin monomers from 0.0 to 6.0. Compared to the bare carbon anode, the introduction of MPTMS significantly improves the electrochemical performance as a lithium-ion battery anode. The initial and cycled discharge/charge capacities of the SiOC/C nanohybrid anodes reach maximum with the MPTMS ratio of 0.50, which displays very good rate performance as well. Detailed structures and electrochemical performance as lithium-ion battery anodes have been systematically investigated. The structure-property correlation and corresponding mechanism have been discussed.

Collaboration


Dive into the Bao Qiu's collaboration.

Top Co-Authors

Avatar

Zhaoping Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yonggao Xia

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaoyan Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ya-Jun Cheng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Meimei Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ying Xiao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qing Ji

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jianqiang Meng

Tianjin Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Jun Wang

University of Münster

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge