Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bao-Rong Shen is active.

Publication


Featured researches published by Bao-Rong Shen.


Proceedings of the National Academy of Sciences of the United States of America | 2011

PDGF-BB and TGF-β1 on cross-talk between endothelial and smooth muscle cells in vascular remodeling induced by low shear stress

Ying-Xin Qi; Jun Jiang; Xiao-Hua Jiang; Xiao-Dong Wang; Su-Ying Ji; Yue Han; Ding-Kun Long; Bao-Rong Shen; Zhi-Qiang Yan; Shu Chien; Zong-Lai Jiang

Shear stress, especially low shear stress (LowSS), plays an important role in vascular remodeling during atherosclerosis. Endothelial cells (ECs), which are directly exposed to shear stress, convert mechanical stimuli into intracellular signals and interact with the underlying vascular smooth muscle cells (VSMCs). The interactions between ECs and VSMCs modulate the LowSS-induced vascular remodeling. With the use of proteomic analysis, the protein profiles of rat aorta cultured under LowSS (5 dyn/cm2) and normal shear stress (15 dyn/cm2) were compared. By using Ingenuity Pathway Analysis to identify protein–protein association, a network was disclosed that involves two secretary molecules, PDGF-BB and TGF-β1, and three other linked proteins, lamin A, lysyl oxidase, and ERK 1/2. The roles of this network in cellular communication, migration, and proliferation were further studied in vitro by a cocultured parallel-plate flow chamber system. LowSS up-regulated migration and proliferation of ECs and VSMCs, increased productions of PDGF-BB and TGF-β1, enhanced expressions of lysyl oxidase and phospho-ERK1/2, and decreased Lamin A in ECs and VSMCs. These changes induced by LowSS were confirmed by using PDGF-BB recombinant protein, siRNA, and neutralizing antibody. TGF-β1 had similar influences on ECs as PDGF-BB, but not on VSMCs. Our results suggest that ECs convert the LowSS stimuli into up-regulations of PDGF-BB and TGF-β1, but these two factors play different roles in LowSS-induced vascular remodeling. PDGF-BB is involved in the paracrine control of VSMCs by ECs, whereas TGF-β1 participates in the feedback control from VSMCs to ECs.


Journal of Vascular Research | 2007

Frequency-Dependent Phenotype Modulation of Vascular Smooth Muscle Cells under Cyclic Mechanical Strain

Ming-Juan Qu; Bo Liu; Han-Qin Wang; Zhi-Qiang Yan; Bao-Rong Shen; Zong-Lai Jiang

Phenotype transformation of vascular smooth muscle cells (VSMCs) is known to be modulated by mechanical strain. The present study was designed to investigate how different frequencies of mechanical strain affected VSMC phenotype. VSMCs were subjected to the strains of 10% elongation at 0, 0.5, 1 and 2 Hz for 24 h using a Flexercell strain unit. VSMC phenotype was assessed by cell morphology, measurement of two-dimensional cell area, Western blotting for protein and RT-PCR for mRNA expression of differentiation markers. Possible protein kinases involved were evaluated by Western blotting with their specific antibodies. The strains at certain frequencies could induce a contractile morphology in VSMC with almost perpendicular alignment to the strain direction. The strains also regulated protein and mRNA expression of several differentiation markers, as well as the activation of extracellular signal-regulated kinases (ERKs), p38 MAP kinase and protein kinase B (Akt) in a frequency-dependent manner. Furthermore, the inhibition of the p38 pathway could block the frequency-induced phenotype modulation of VSMCs, but not inhibition of ERK or Akt pathways. These results indicate that the frequency of cyclic strain can result in the differentiated phenotype of VSMCs, and it is mediated at least partly by the activation of the p38 pathway.


Journal of Cellular Biochemistry | 2010

Cyclic strain modulates migration and proliferation of vascular smooth muscle cells via Rho‐GDIα, Rac1, and p38 pathway

Ying-Xin Qi; Ming-Juan Qu; Zhi-Qiang Yan; Dan Zhao; Xiao-Hua Jiang; Bao-Rong Shen; Zong-Lai Jiang

Cyclic strain is an important inducer of proliferation and migration of vascular smooth muscle cells (VSMCs) which are involved in vascular remodeling during hypertension. However, its mechanism remains to be elucidated. VSMCs of rat aorta were exposed to cyclic strains in vitro with defined parameters, the static, 5%‐strain (physiological) and 15%‐strain (pathological), at 1.25 Hz for 24 h respectively. Then the possible signaling molecules participated in strain‐induced VSMC migration and proliferation were investigated. The results showed that 15%‐strain significantly increased VSMC migration and proliferation in comparison with 5%‐strain. Expression of Rho GDP dissociation inhibitor alpha (Rho‐GDIα) was repressed by 15%‐strain, but expressions of phospho‐Rac1 and phospho‐p38 were increased. Expressions of phospho‐Akt and phospho‐ERK1/2 were similar between the static, 5%‐strain and 15%‐strain groups. Rho‐GDIα “knock‐down” by target siRNA transfection increased migration and proliferation of VSMCs, and up‐regulated phosphorylation of Rac1 and p38 in all groups. Rac1 “knock‐down” repressed migration and proliferation of VSMCs, down‐regulated phosphorylation of p38, but had no effect on Rho‐GDIα expression. When siRNAs of Rho‐GDIα and Rac1 were co‐transfected to VSMCs, the expressions of Rho‐GDIα and phospho‐Rac1 were both decreased, and the effects of Rho‐GDIα “knock‐down” were blocked. Rho‐GDIα “knock‐down” promoted while Rac1 “knock‐down” postponed the assembly of stress fibers and focal adhesions in static. The results demonstrate that the pathological cyclic strain might induce migration and proliferation of VSMCs via repressing expression of Rho‐GDIα, which subsequently verified phosphorylations of Rac1 and p38. J. Cell. Biochem. 109: 906–914, 2010.


Journal of Biomechanics | 2009

Histone deacetylases modulate vascular smooth muscle cell migration induced by cyclic mechanical strain

Zhi-Qiang Yan; Qin-Ping Yao; Ming-Lang Zhang; Yin-Xin Qi; Zi-Yi Guo; Bao-Rong Shen; Zong-Lai Jiang

The migration of vascular smooth muscle cells (VSMCs) is found to participate in vascular remodeling which is pivotal in the pathogenesis of vascular diseases, for instance atherosclerosis and restenosis. However, the underlying mechanisms of how mechanical strain influence VSMC migration remain to be elucidated. Histone deacetylases (HDACs) are involved in chromatin remodeling and modification of both histone and nonhistone transcription regulatory proteins, thus HDACs modulate genes important for complex biological processes. But whether HDACs take part in modulating migration of VSMCs induced by mechanical strain is poorly understood. Here, we showed that cyclic strain of 1 Hz at 10% elongation for 48 h significantly inhibited the migration of cultured VSMCs compared to the static one. The cyclic strain upregulated the levels of acetylased histone H3 and HDAC7 while downregulated the level of HDAC3/4 in VSMCs. Furthermore, the mechanically induced VSMC migration was diminished by treatment with tributyrin, a HDAC inhibitor. We also observed hyperacetylation of histone H3 and reduced expression of HDAC7 upon tributyrin treatment. These results provide convincing evidence that HDACs are involved in the migration of VSMCs induced by mechanical strain through chromatin remodeling. Thus, inhibition of HDAC may be beneficial in preventing the migration of VSMCs in treating proliferative vascular diseases.


Journal of Cellular Biochemistry | 2012

Association of SIRT1 expression with shear stress induced endothelial progenitor cell differentiation.

Bin-Bin Cheng; Zhi-Qiang Yan; Qing-Ping Yao; Bao-Rong Shen; Ji-Yao Wang; Li-Zhi Gao; Yu-Qing Li; Hai-Tao Yuan; Ying-Xin Qi; Zong-Lai Jiang

Shear stress imposed by blood flow is crucial for differentiation of endothelial progenitor cells (EPCs). Histone deacetylase SIRT1 has been shown to play a pivotal role in many physiological processes. However, association of SIRT1 expression with shear stress‐induced EPC differentiation remains to be elucidated. The present study was designed to determine the effect of SIRT1 on EPC differentiation induced by shear stress, and to seek the underlying mechanisms. Human umbilical cord blood‐derived EPCs were exposed to laminar shear stress of 15 dyn/cm2 by parallel plate flow chamber system. Shear stress enhanced EPC differentiation toward endothelial cells (ECs) while inhibited to smooth muscle cells (SMCs). The expressions of phospho‐Akt, SIRT1 and histone H3 acetylation (Ac‐H3) in EPCs were detected after exposure to shear stress for 2, 6, 12, and 24 h, respectively. Shear stress significantly activated Akt phosphorylation, augmented SIRT1 expression and downregulated Ac‐H3. SIRT1 siRNA in EPCs diminished the expression of EC markers, but increased the expression of SMC markers, and resulted in upregulation of Ac‐H3. Whereas, resveratrol, an activator of SIRT1, had the opposite effects on both EPC differentiation and histone H3 acetylation. Wortmannin, an inhibitor of PI3‐kinase, suppressed endothelial differentiation of EPCs, decreased SIRT1, and upregulated Ac‐H3 expression. In addition, SIRT1 promoted tube formation of EPCs in matrix gels. These results provided a mechanobiological basis of shear stress‐induced EPC differentiation into ECs and suggest that PI3k/Akt‐SIRT1‐Ac‐H3 pathway is crucial in such a process. J. Cell. Biochem. 113: 3663–3671, 2012.


Annals of Biomedical Engineering | 2010

Normal Shear Stress and Vascular Smooth Muscle Cells Modulate Migration of Endothelial Cells Through Histone Deacetylase 6 Activation and Tubulin Acetylation

Yan-Hua Wang; Zhi-Qiang Yan; Ying-Xin Qi; Bin-Bin Cheng; Xiao-Dong Wang; Dan Zhao; Bao-Rong Shen; Zong-Lai Jiang

Endothelial cells (ECs) line the innermost of the blood vessel wall and are constantly subjected to shear stress imposed by blood flow. ECs were also influenced by the neighboring vascular smooth muscle cells (VSMCs). The bidirectional communication between ECs and VSMCs modulates vascular homeostasis. In this study, the involvement of histone deacetylase 6 (HDAC6) in modulating migration of ECs co-cultured with VSMCs by the normal level of laminar shear stress (NSS) was investigated. ECs was either cultured alone or co-cultured with VSMCs under static conditions or subjected to NSS of 15 dyne/cm2 by using a parallel-plate co-culture flow chamber system. It was demonstrated that both NSS and VSMCs could increase EC migration. The migration level of ECs co-cultured with VSMCs under NSS was not higher than that under the static condition. The process of EC migration regulated by VSMCs and NSS was associated with the increased expression of HDAC6 and low level of acetylated tubulin. The increase in HDAC6 expression was accompanied by a time-dependent decrease in the acetylation of tubulin in ECs co-cultured with VSMCs. Inhibition of the HDAC6 by siRNA or tributyrin, an inhibitor of HDACs, induced a parallel alteration in the migration and the acetylated tubulin of ECs co-cultured with VSMCs. It was observed by immunofluorescence staining that the acetylated tubulin was distributed mostly around the cell nucleus in ECs co-cultured with VSMCs. The results suggest that the NSS may display a protective function on the vascular homeostasis by modulating EC migration to a normal level in a VSMC-dependent manner. This modulation process involves the down-regulation of acetylated tubulin which results from increased HDAC6 activity in ECs.


The International Journal of Biochemistry & Cell Biology | 2014

The role of SIRT6 in the differentiation of vascular smooth muscle cells in response to cyclic strain.

Qing-Ping Yao; Ping Zhang; Ying-Xin Qi; Si-Guo Chen; Bao-Rong Shen; Yue Han; Zhi-Qiang Yan; Zong-Lai Jiang

Vascular smooth muscle cells (VSMCs) may switch their phenotype between a quiescent contractile phenotype and a synthetic phenotype in response to cyclic strain, and this switch may contribute to hypertension, atherosclerosis, and restenosis. SIRT 6 is a member of the sirtuin family, and plays an important role in different cell processes, including differentiation. We hypothesized that cyclic strain modulates the differentiation of VSMCs via a transforming growth factor-β1 (TGF-β1)-Smad-SIRT6 pathway. VSMCs were subjected to cyclic strain using a Flexercell strain unit. It was demonstrated that the strain stimulated the secretion of TGF-β1 into the supernatant of VSMCs. After exposed to the strain, the expressions of contractile phenotype markers, including smooth muscle protein 22 alpha, alpha-actin, and calponin, and phosphorylated Smad2, phosphorylated Smad5, SIRT6 and c-fos were up-regulated in VSMCs by western blot and immunofluorescence. And the expression of intercellular-adhesion molecule-1 (ICAM-1) was also increased detected by flow cytometry. The strained-induced up-regulation of SIRT6 was blocked by a TGF-β1 neutralizing antibody. Furthermore, the effects of strain on VSMCs were abrogated by SIRT6-specific siRNA transfection via the suppression c-fos and ICAM-1. These results suggest that SIRT6 may play a critical role in the regulation of VSMC differentiation in response to the cyclic strain.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Nuclear envelope proteins modulate proliferation of vascular smooth muscle cells during cyclic stretch application

Ying-Xin Qi; Qing-Ping Yao; Kai Huang; Qian Shi; Ping Zhang; Guo-Liang Wang; Yue Han; Han Bao; Lu Wang; Hai-Peng Li; Bao-Rong Shen; Yingxiao Wang; Shu Chien; Zong-Lai Jiang

Significance The proliferation of vascular smooth muscle cells (VSMCs) in response to excessive cyclic stretch is crucial in vascular remodeling in hypertension. To elucidate the molecular mechanism, we studied the mechanobiological roles of emerin and lamin A/C, two important components of nuclear envelope proteins localized beneath the inner nuclear membrane. We found that emerin and lamin A/C play significant roles in the mechanical modulation of VSMC proliferation. The repressed expression of emerin and lamin A/C mediates the stretch-induced VSMC proliferation, which is important in vascular remodeling during hypertension. Emerin and lamin A/C bind to the respective sequencing-specific motifs of transcription factors to mediate the molecular mechanisms underlying the hyperstretch-induced VSMC dysfunction. Cyclic stretch is an important inducer of vascular smooth muscle cell (VSMC) proliferation, which is crucial in vascular remodeling during hypertension. However, the molecular mechanism remains unclear. We studied the effects of emerin and lamin A/C, two important nuclear envelope proteins, on VSMC proliferation in hypertension and the underlying mechano-mechanisms. In common carotid artery of hypertensive rats in vivo and in cultured cells subjected to high (15%) cyclic stretch in vitro, VSMC proliferation was increased significantly, and the expression of emerin and lamin A/C was repressed compared with normotensive or normal (5%) cyclic stretch controls. Using targeted siRNA to mimic the repressed expression of emerin or lamin A/C induced by 15% stretch, we found that VSMC proliferation was enhanced under static and 5%-stretch conditions. Overexpression of emerin or lamin A/C reversed VSMC proliferation induced by 15% stretch. Hence, emerin and lamin A/C play critical roles in suppressing VSMC hyperproliferation induced by hyperstretch. ChIP-on-chip and MOTIF analyses showed that the DNAs binding with emerin contain three transcription factor motifs: CCNGGA, CCMGCC, and ABTTCCG; DNAs binding with lamin A/C contain the motifs CVGGAA, GCCGCYGC, and DAAGAAA. Protein/DNA array proved that altered emerin or lamin A/C expression modulated the activation of various transcription factors. Furthermore, accelerating local expression of emerin or lamin A/C reversed cell proliferation in the carotid artery of hypertensive rats in vivo. Our findings establish the pathogenetic role of emerin and lamin A/C repression in stretch-induced VSMC proliferation and suggest mechanobiological mechanism underlying this process that involves the sequence-specific binding of emerin and lamin A/C to specific transcription factor motifs.


PLOS ONE | 2013

Induction of Thoracic Aortic Remodeling by Endothelial-Specific Deletion of MicroRNA-21 in Mice

Xing-Yi Zhang; Bao-Rong Shen; Yu-Cheng Zhang; Xue-Jiao Wan; Qing-Ping Yao; Guang-Liang Wu; Ji-Yao Wang; Si-Guo Chen; Zhi-Qiang Yan; Zong-Lai Jiang

MicroRNAs (miRs) are known to have an important role in modulating vascular biology. MiR21 was found to be involved in the pathogenesis of proliferative vascular disease. The role of miR21 in endothelial cells (ECs) has well studied in vitro, but the study in vivo remains to be elucidated. In this study, miR21 endothelial-specific knockout mice were generated by Cre/LoxP system. Compared with wild-type mice, the miR21 deletion in ECs resulted in structural and functional remodeling of aorta significantly, such as diastolic pressure dropping, maximal tension depression, endothelium-dependent relaxation impairment, an increase of opening angles and wall-thickness/inner diameter ratio, and compliance decrease, in the miR21 endothelial-specific knockout mice. Furthermore, the miR21 deletion in ECs induced down-regulation of collagen I, collagen III and elastin mRNA and proteins, as well as up-regulation of Smad7 and down-regulation of Smad2/5 in the aorta of miR21 endothelial-specific knockout mice. CTGF and downstream MMP/TIMP changes were also identified to mediate vascular remodeling. The results showed that miR21 is identified as a critical molecule to modulate vascular remodeling, which will help to understand the role of miR21 in vascular biology and the pathogenesis of vascular diseases.


European Journal of Cell Biology | 2009

Vascular smooth muscle cells promote endothelial cell adhesion via microtubule dynamics and activation of paxillin and the extracellular signal-regulated kinase (ERK) pathway in a co-culture system

Yan-Hua Wang; Zhi-Qiang Yan; Bao-Rong Shen; Lu Zhang; Ping Zhang; Zong-Lai Jiang

Interaction between endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) plays an important role in vascular biology. Cell adhesion to the extracellular matrix provides critical environmental information necessary for cell migration, proliferation, differentiation and survival. In this study, the role of VSMCs in EC adhesion was demonstrated by using a co-culture system. It was shown that the co-cultured VSMCs significantly increased the number of adherent ECs, and induced an increase of total focal adhesion area in ECs. These changes were associated with a low microtubule-to-tubulin ratio, and activation of extracellular signal-regulated kinase (ERK) and paxillin. Both the EC adhesion state and activation of the ERK/paxillin pathway by the co-cultured VSMCs could be inhibited by trichostatin A (TSA). As an inhibitor of histone deacetylase, TSA acts by modulating microtubule polymerization state. Taken together, these data suggest that the co-cultured VSMCs promote EC adhesion by modulating the microtubule cytoskeleton polymerization state, which in turn activates the ERK pathway and up-regulates phosphorylated paxillin expression to accelerate focal adhesion formation.

Collaboration


Dive into the Bao-Rong Shen's collaboration.

Top Co-Authors

Avatar

Zong-Lai Jiang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Zhi-Qiang Yan

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Ying-Xin Qi

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Qing-Ping Yao

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Ping Zhang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Yue Han

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Lu Wang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Bin-Bin Cheng

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Bo Liu

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Guo-Liang Wang

Shanghai Jiao Tong University

View shared research outputs
Researchain Logo
Decentralizing Knowledge