Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Baohong Wang is active.

Publication


Featured researches published by Baohong Wang.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Symbiotic gut microbes modulate human metabolic phenotypes

Min Li; Baohong Wang; Menghui Zhang; Mattias Rantalainen; Wang S; Haokui Zhou; Yan Zhang; Jian Shen; Xiaoyan Pang; Meiling Zhang; Hua Wei; Yu Chen; Haifeng Lu; Jian Zuo; Mingming Su; Yunping Qiu; Wei Jia; Chaoni Xiao; Leon M. Smith; Shengli Yang; Elaine Holmes; Huiru Tang; Guoping Zhao; Jeremy K. Nicholson; Lanjuan Li; Liping Zhao

Humans have evolved intimate symbiotic relationships with a consortium of gut microbes (microbiome) and individual variations in the microbiome influence host health, may be implicated in disease etiology, and affect drug metabolism, toxicity, and efficacy. However, the molecular basis of these microbe–host interactions and the roles of individual bacterial species are obscure. We now demonstrate a“transgenomic” approach to link gut microbiome and metabolic phenotype (metabotype) variation. We have used a combination of spectroscopic, microbiomic, and multivariate statistical tools to analyze fecal and urinary samples from seven Chinese individuals (sampled twice) and to model the microbial–host metabolic connectivities. At the species level, we found structural differences in the Chinese family gut microbiomes and those reported for American volunteers, which is consistent with population microbial cometabolic differences reported in epidemiological studies. We also introduce the concept of functional metagenomics, defined as “the characterization of key functional members of the microbiome that most influence host metabolism and hence health.” For example, Faecalibacterium prausnitzii population variation is associated with modulation of eight urinary metabolites of diverse structure, indicating that this species is a highly functionally active member of the microbiome, influencing numerous host pathways. Other species were identified showing different and varied metabolic interactions. Our approach for understanding the dynamic basis of host–microbiome symbiosis provides a foundation for the development of functional metagenomics as a probe of systemic effects of drugs and diet that are of relevance to personal and public health care solutions.


Hepatology | 2011

Characterization of fecal microbial communities in patients with liver cirrhosis

Yanfei Chen; Fengling Yang; Haifeng Lu; Baohong Wang; Yunbo Chen; Dajiang Lei; Yuezhu Wang; Baoli Zhu; Lanjuan Li

Liver cirrhosis is the pathologic end stage of chronic liver disease. Increasing evidence suggests that gut flora is implicated in the pathogenesis of liver cirrhosis complications. The aim of this study was to characterize the fecal microbial community in patients with liver cirrhosis in comparison with healthy individuals. We recruited 36 patients with liver cirrhosis and 24 healthy controls. The fecal microbial communities was analyzed by way of 454 pyrosequencing of the 16S ribosomal RNA V3 region followed by real‐time quantitative polymerase chain reaction. Community‐wide changes of fecal microbiota in liver cirrhosis were observed compared with healthy controls. The proportion of phylum Bacteroidetes was significantly reduced (P = 0.008), whereas Proteobacteria and Fusobacteria were highly enriched in the cirrhosis group (P = 0.001 and 0.002, respectively). Enterobacteriaceae (P = 0.001), Veillonellaceae (P = 0.046), and Streptococcaceae (P = 0.001) were prevalent in patients with cirrhosis at the family level. A positive correlation was observed between Child‐Turcotte‐Pugh (CTP) score and Streptococcaceae (R = 0.386, P = 0.02). Lachnospiraceae decreased significantly in patients with cirrhosis (P = 0.004) and correlated negatively with CTP score (R = −0.49, P = 0.002). Using partial least square discriminate analysis, we identified 149 operational taxonomic units (OTUs) as key phylotypes that responded to cirrhosis, most of which were Lachnospiraceae (65 OTUs), Streptococcaceae (23 OTUs), and Veillonellaceae (21 OTUs). Conclusion: Fecal microbial communities are distinct in patients with cirrhosis compared with healthy individuals. The prevalence of potentially pathogenic bacteria, such as Enterobacteriaceae and Streptococcaceae, with the reduction of beneficial populations such as Lachnospiraceae in patients with cirrhosis may affect prognosis. (HEPATOLOGY 2011;)


Microbial Ecology | 2013

Dysbiosis Signature of Fecal Microbiota in Colorectal Cancer Patients

Na Wu; Xi Yang; Ruifen Zhang; Jun Li; Xue Xiao; Yongfei Hu; Yanfei Chen; Fengling Yang; Na Lu; Zhiyun Wang; Chunguang Luan; Yulan Liu; Baohong Wang; Charlie Xiang; Yuezhu Wang; Fangqing Zhao; George F. Gao; Wang S; Lanjuan Li; Haizeng Zhang; Baoli Zhu

The human gut microbiota is a complex system that is essential to the health of the host. Increasing evidence suggests that the gut microbiota may play an important role in the pathogenesis of colorectal cancer (CRC). In this study, we used pyrosequencing of the 16S rRNA gene V3 region to characterize the fecal microbiota of 19 patients with CRC and 20 healthy control subjects. The results revealed striking differences in fecal microbial population patterns between these two groups. Partial least-squares discriminant analysis showed that 17 phylotypes closely related to Bacteroides were enriched in the gut microbiota of CRC patients, whereas nine operational taxonomic units, represented by the butyrate-producing genera Faecalibacterium and Roseburia, were significantly less abundant. A positive correlation was observed between the abundance of Bacteroides species and CRC disease status (R = 0.462, P = 0.046 < 0.5). In addition, 16 genera were significantly more abundant in CRC samples than in controls, including potentially pathogenic Fusobacterium and Campylobacter species at genus level. The dysbiosis of fecal microbiota, characterized by the enrichment of potential pathogens and the decrease in butyrate-producing members, may therefore represent a specific microbial signature of CRC. A greater understanding of the dynamics of the fecal microbiota may assist in the development of novel fecal microbiome-related diagnostic tools for CRC.


Journal of Proteome Research | 2012

Metabonomic Profiles Discriminate Hepatocellular Carcinoma from Liver Cirrhosis by Ultraperformance Liquid Chromatography–Mass Spectrometry

Baohong Wang; Deying Chen; Yu Chen; Zhenhua Hu; Min Cao; Qing Xie; Yanfei Chen; Jiali Xu; Shusen Zheng; Lanjuan Li

Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and usually develops in patients with liver cirrhosis (LC). Biomarkers that discriminate HCC from LC are important but are limited. In the present study, an ultraperformance liquid chromatography-mass spectrometry (UPLC-MS)-based metabonomics approach was used to characterize serum profiles from HCC (n = 82), LC (n = 48), and healthy subjects (n = 90), and the accuracy of UPLC-MS profiles and alpha-fetoprotein (AFP) levels were compared for their use in HCC diagnosis. By multivariate data and receiver operating characteristic curves analysis, metabolic profiles were capable of discriminating not only patients from the controls but also HCC from LC with 100% sensitivity and specificity. Thirteen potential biomarkers were identified and suggested that there were significant disturbances of key metabolic pathways, such as organic acids, phospholipids, fatty acids, bile acids, and gut flora metabolism, in HCC patients. Canavaninosuccinate was first identified as a metabolite that exhibited a significant decrease in LC and an increase in HCC. In addition, glycochenodeoxycholic acid was suggested to be an important indicator for HCC diagnosis and disease prognosis. UPLC-MS signatures, alone or in combination with AFP levels, could be an efficient and convenient tool for early diagnosis and screening of HCC in high-risk populations.


Microbial Ecology | 2012

Changes of Fecal Bifidobacterium Species in Adult Patients with Hepatitis B Virus-Induced Chronic Liver Disease

Min Xu; Baohong Wang; Yiqi Fu; Yanfei Chen; Fengling Yang; Haifeng Lu; Yunbo Chen; Jiali Xu; Lanjuan Li

The beneficial effects of Bifidobacteria on health have been widely accepted. Patients with chronic liver disease have varying degrees of intestinal microflora imbalance with a decrease of total Bifidobacterial counts. Since different properties have been attributed to different Bifidobacterium species and there is no information available for the detailed changes in the genus Bifidobacterium in patients with chronic liver disease heretofore, it is meaningful to investigate the structure of this bacterium at the species level in these patients. The aim of this study was to characterize the composition of intestinal Bifidobacterium in patients with hepatitis B virus-induced chronic liver disease. Nested-PCR-based denaturing gradient gel electrophoresis (PCR-DGGE), clone library, and real-time quantitative PCR were performed on the fecal samples of 16 patients with chronic hepatitis B (CHB patients), 16 patients with hepatitis B virus-related cirrhosis (HBV cirrhotics), and 15 healthy subjects (Controls). Though there was no significant difference in the diversity among the three groups (P = 0.196), Bifidobacterium dentium seems to be specifically enhanced in patients as the PCR-DGGE profiles showed, which was further validated by clone library and real-time quantitative PCR. In contrast to the B. dentium, Bifidobacteriumcatenulatum/Bifidobacterium pseudocatenulatum were detected less frequently in the predominant profile and by quantitative PCR in HBV cirrhotics than in the controls, and the level of this species was also significantly different between these two groups (P = 0.023). Although having no quantitative difference among the three groups, Bifidobacterium longum was less commonly detected in HBV cirrhotics than in CHB patients and Controls by quantitative PCR (P = 0.011). Thus, the composition of intestinal Bifidobacterium was deeply altered in CHB and HBV cirrhotic patients with a shift from beneficial species to opportunistic pathogens. The results provide further insights into the dysbiosis of the intestinal microbiota in patients with hepatitis B virus-induced chronic liver disease and might potentially serve as guidance for the probiotics interventions of these diseases.


Digestive and Liver Disease | 2013

Metabolomic analyses of faeces reveals malabsorption in cirrhotic patients

Haijun Huang; Anye Zhang; Hongcui Cao; Haifeng Lu; Baohong Wang; Qing Xie; Wei Xu; Lanjuan Li

BACKGROUND The study of faeces offers a unique opportunity to observe cooperation between the microbiome and the metabolism of mammalian hosts, an essential element in the study of the human metabolome. In the present study, a global metabolomics approach was used to identify metabolites differentially excreted in the faeces of cirrhotic patients compared to controls. METHODS Seventeen cirrhotic patients and 24 healthy individuals were recruited. Faecal metabolites were detected through non-targeted reversed-phase ultra-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry. RESULTS A total of 9215 peaks were detected. Using unequal variance t-tests, 2393 peaks were observed with P≤0.05, approximately 74.0% of which were due to decreased faecal metabolite concentrations in liver cirrhosis vs. healthy controls. Integrating multivariate data analyses, we identified six major groups of metabolites. Relative levels of identified metabolites were as follows: strong increase in lysophosphatidylcholines, aromatic amino acids, fatty acids, and acylcarnitines, and a dramatic decrease in bile acids and bile pigments. CONCLUSION With severe hepatic injury in patients with liver cirrhosis, malabsorption occurs along with disorders of fatty acid metabolism, potentially due to changes in gut microflora.


Systematic and Applied Microbiology | 2009

Molecular diversity of Bacteroides spp. in human fecal microbiota as determined by group-specific 16S rRNA gene clone library analysis

Min Li; Haokui Zhou; Weiying Hua; Baohong Wang; Wang S; Guoping Zhao; Lanjuan Li; Liping Zhao; Xiaoyan Pang

Bacteroides spp. represent a prominent bacterial group in human intestinal microbiota with roles in symbiosis and pathogenicity; however, the detailed composition of this group in human feces has yet to be comprehensively characterized. In this study, the molecular diversity of Bacteroides spp. in human fecal microbiota was analyzed from a seven-member, four-generation Chinese family using Bacteroides spp. group-specific 16S rRNA gene clone library analysis. A total of 549 partial 16S rRNA sequences amplified by Bacteroides spp.-specific primers were classified into 52 operational taxonomic units (OTUs) with a 99% sequence identity cut-off. Twenty-three OTUs, representing 83% of all clones, were related to 11 validly described Bacteroides species, dominated by Bacteroides coprocola, B. uniformis, and B. vulgatus. Most of the OTUs did not correspond to known species and represented hitherto uncharacterized bacteria. Relative to 16S rRNA gene universal libraries, the diversity of Bacteroides spp. detected by the group-specific libraries was much higher than previously described. Remarkable inter-individual differences were also observed in the composition of Bacteroides spp. in this family cohort. The comprehensive observation of molecular diversity of Bacteroides spp. provides new insights into potential contributions of various species in this group to human health and disease.


Journal of Virological Methods | 2011

Rapid detection of common viruses using multi-analyte suspension arrays

Daojun Yu; Shenghai Wu; Baohong Wang; Yunbo Chen; Lanjuan Li

A method that uses specific oligonucleotide probes coupled to a specific array of fluorescent microspheres in multi-analyte suspension arrays was employed for the detection of common viruses, such as Herpes virus (HSV), Human papillomavirus (HPV) and Hepatitis B virus (HBV). Sixteen species-specific probes and 9 sets of specific primers were designed based on conserved sequences of these viruses in the GenBank database. Serial symmetric PCR, asymmetric PCR and multiple PCR assays were employed to evaluate the sensitivity, specificity and reproducibility of multi-analyte suspension arrays analyzed on a Luminex-100 analyzer instrument. The symmetric PCR amplification of four types of HSV, four types of HPV and HBV genotypes of B, C and D, combined with their corresponding species-specific probes and specificities were completely concordant with the results from a comparative sequence analyses. There was no significant difference in the median fluorescence intensity (MFI) value between symmetric PCR and asymmetric PCR when the viral DNA concentration was above 10(4)copies/test. Both PCR products were negative in the multi-analyte suspension arrays with viral DNA concentrations less than 10(3)copies/test. A multi-analyte suspension array is a flexible, high-throughput, relatively simple method for rapid identification of common viruses in the clinical laboratory.


Vaccine | 2009

Construction and cellular immune response induction of HA-based alphavirus replicon vaccines against human-avian influenza (H5N1).

Shigui Yang; Jianer Wo; Minwei Li; Fen-fang Mi; Chengbo Yu; Guoliang Lv; Hongcui Cao; Haifeng Lu; Baohong Wang; Hanping Zhu; Lanjuan Li

Several approaches are being taken worldwide to develop vaccines against H5N1 viruses; most of them, however, pose both practical and immunological challenges. One potential strategy for improving the immunogenicity of vaccines involves the use of alphavirus replicons and VP22, a herpes simplex type 1 (HSV-1) protein. In this study, we analysed the antigenic peptides and homogeneity of the HA sequences (human isolates of the H5N1 subtype, from 1997 to 2003) and explored a novel alphavirus replicon system of VP22 fused with HA, to assess whether the immunogenicity of an HA-based replicon vaccine could be induced and augmented via fusion with VP22. Further, replicon particles expressing VP22, and enhanced green fluorescent protein (EGFP) were individually used as controls. Cellular immune responses in mice immunised with replicons were evaluated by identifying specific intracellular cytokine production with flow cytometry (FCM). Animal-based experimentation indicated that both the IL-4 expression of CD4(+) T cells and the IFN-gamma expression of CD8(+) T cells were significantly increased in mice immunised with VPR-HA and VPR-VP22/HA. A dose titration effect vis-à-vis both IL-4 expression and IFN-gamma expression were observed in VPR-HA- and VPR-VP22/HA-vaccinated mice. Our results revealed that both VPR-VP22/HA and VPR-HA replicon particles presented a promising approach for developing vaccines against human-avian influenza, and VP22 could enhance the immunogenicity of the HA antigens to which it is fused.


Journal of Translational Medicine | 2011

Molecular features of the complementarity determining region 3 motif of the T cell population and subsets in the blood of patients with chronic severe hepatitis B

Jiezuan Yang; Jianqin He; Haifeng Lu; Li Wei; Sujun Li; Baohong Wang; Hongyan Diao; Lanjuan Li

BackgroundT cell receptor (TCR) reflects the status and function of T cells. We previously developed a gene melting spectral pattern (GMSP) assay, which rapidly detects clonal expansion of the T cell receptor β variable gene (TCRBV) in patients with HBV by using quantitative real-time reverse transcription PCR (qRT-PCR) with DNA melting curve analysis. However, the molecular profiles of TCRBV in peripheral blood mononuclear cells (PBMCs) and CD8+, CD8- cell subsets from chronic severe hepatitis B (CSHB) patients have not been well described.MethodsHuman PBMCs were separated and sorted into CD8+ and CD8- cell subsets using density gradient centrifugation and magnetic activated cell sorting (MACS). The molecular features of the TCRBV CDR3 motif were determined using GMSP analysis; the TCRBV families were cloned and sequenced when the GMSP profile showed a single-peak, indicative of a monoclonal population.ResultsThe number of skewed TCRBV in the CD8+ cell subset was significantly higher than that of the CD8- cell subset as assessed by GMSP analysis. The TCRBV11 and BV7 were expressed more frequently than other members of TCRBV family in PBMCs and CD8+, CD8- subsets. Also the relatively conserved amino acid motifs were detected in the TCRBV22, BV18 and BV11 CDR3 in PBMCs among patients with CSHB.ConclusionsThe molecular features of the TCRBV CDR3 were markedly different among PBMCs and CD8+, CD8- cell subsets derived from CSHB patients. Analysis of the TCRBV expression in the CD8+ subset was more accurate in assessing the status and function of circulating T cells. The expression of TCRBV11, BV7 and the relatively conserved CDR3 amino acid motifs could also help to predict and treat patients with CSHB.

Collaboration


Dive into the Baohong Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Baoli Zhu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge