Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Baojian Xue is active.

Publication


Featured researches published by Baojian Xue.


American Journal of Physiology-heart and Circulatory Physiology | 2011

Central interactions of aldosterone and angiotensin II in aldosterone- and angiotensin II-induced hypertension.

Baojian Xue; Terry G. Beltz; Yang Yu; Fang Guo; Celso E. Gomez-Sanchez; Meredith Hay; Alan Kim Johnson

Many studies have implicated both angiotensin II (ANG II) and aldosterone (Aldo) in the pathogenesis of hypertension, the progression of renal injury, and cardiac remodeling after myocardial infarction. In several cases, ANG II and Aldo have been shown to have synergistic interactions in the periphery. In the present studies, we tested the hypothesis that ANG II and Aldo interact centrally in Aldo- and ANG II-induced hypertension in male rats. In rats with blood pressure (BP) and heart rate (HR) measured by DSI telemetry, intracerebroventricular (icv) infusions of the mineralocorticoid receptor (MR) antagonists spironolactone and RU28318 or the angiotensin type 1 receptor (AT1R) antagonist irbesartan significantly inhibited Aldo-induced hypertension. In ANG II-induced hypertension, icv infusion of RU28318 significantly reduced the increase in BP. Moreover, icv infusions of the reactive oxygen species (ROS) scavenger tempol or the NADPH oxidase inhibitor apocynin attenuated Aldo-induced hypertension. To confirm these effects of pharmacological antagonists, icv injections of either recombinant adeno-associated virus carrying siRNA silencers of AT1aR (AT1aR-siRNA) or MR (MR-siRNA) significantly attenuated the development of Aldo-induced hypertension. The immunohistochemical and Western blot analyses of AT1aR-siRNA- or MR-siRNA-injected rats showed a marked reduction in the expression of AT1R or MR in the paraventricular nucleus compared with scrambled siRNA rats. When animals from all studies underwent ganglionic blockade with hexamethonium, there was a smaller reduction in the fall of BP in animals receiving icv AT1R or MR antagonists. These results suggest that ANG II and Aldo interact in the brain in a mutually cooperative manner such that the functional integrity of both brain AT1R and MR are necessary for hypertension to be induced by either systemic ANG II or Aldo. The pressor effects produced by systemic ANG II or Aldo involve increased central ROS and sympathetic outflow.


American Journal of Physiology-heart and Circulatory Physiology | 2008

Inhibition of brain proinflammatory cytokine synthesis reduces hypothalamic excitation in rats with ischemia-induced heart failure

Yu-Ming Kang; Zhi-Hua Zhang; Baojian Xue; Robert M. Weiss; Robert B. Felder

The expression of proinflammatory cytokines increases in the hypothalamus of rats with heart failure (HF). The pathophysiological significance of this observation is unknown. We hypothesized that hypothalamic proinflammatory cytokines upregulate the activity of central neural systems that contribute to increased sympathetic nerve activity in HF, specifically, the brain renin-angiotensin system (RAS) and the hypothalamic-pituitary-adrenal (HPA) axis. Rats with HF induced by coronary ligation and sham-operated controls (SHAM) were treated for 4 wk with a continuous intracerebroventricular infusion of the cytokine synthesis inhibitor pentoxifylline (PTX, 10 microg/h) or artificial cerebrospinal fluid (VEH). In VEH-treated HF rats, compared with VEH-treated SHAM rats, the hypothalamic expression of proinflammatory cytokines was increased, along with key components of the brain RAS (renin, angiotensin-converting enzyme, angiotensin type 1 receptor) and corticotropin-releasing hormone, the central indicator of HPA axis activation, in the paraventricular nucleus (PVN) of the hypothalamus. The expression of other inflammatory/excitatory mediators (superoxide, prostaglandin E(2)) was also increased, along with evidence of chronic neuronal excitation in PVN. VEH-treated HF rats had higher plasma levels of norepinephrine, ANG II, interleukin (IL)-1beta, and adrenocorticotropic hormone, increased left ventricular end-diastolic pressure, and increased wet lung-to-body weight ratio. With the exception of plasma IL-1beta, an indicator of peripheral proinflammatory cytokine activity, all measures of neurohumoral excitation were significantly lower in HF rats treated with intracerebroventricular PTX. These findings suggest that the increase in brain proinflammatory cytokines observed in rats with ischemia-induced HF is functionally significant, contributing to neurohumoral excitation by activating brain RAS and the HPA axis.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2013

Sex differences in angiotensin II- and aldosterone-induced hypertension: the central protective effects of estrogen

Baojian Xue; Alan Kim Johnson; Meredith Hay

Premenopausal women have lower blood pressure and a reduced incidence of cardiovascular disease compared with age-matched men. Similar sex differences have been seen across species and in multiple animal models of hypertension. While important progress over the last decade has been made in elucidating some of the mechanisms underlying these differences, there are still significant gaps in our knowledge. Understanding the cellular and molecular mechanisms responsible for sex differences in hypertension will be important for developing sex-specific therapies targeted toward the prevention and treatment of hypertension. Female sex hormones, especially estrogen, have been demonstrated to modulate the renin-angiotensin-aldosterone system (RAAS) and to have beneficial effects on cardiovascular function through actions not only on the kidney, heart, and vasculature, but also on the central nervous system (CNS). This review primarily focuses on the central regulatory actions of estrogen on brain nuclei involved in blood pressure regulation and the interactions between estrogen and the RAAS in the CNS by which estrogen plays an important protective role against the development of hypertension.


Hypertension | 2012

Sensitization of Slow Pressor Angiotensin II (Ang II)–Initiated Hypertension: Induction of Sensitization by Prior Ang II Treatment

Baojian Xue; Zhongming Zhang; Ralph F. Johnson; Alan Kim Johnson

Sensitization involving the central nervous system has been studied in many conditions but has received little attention in investigation of the pathogenesis of hypertension. Our experiments were initiated to determine whether angiotensin II (Ang II)–induced hypertension can be sensitized by prior Ang II treatment and the role of the brain renin-angiotensin-aldosterone system (RAAS) in this process. To demonstrate Ang II–induced sensitization, we used an experimental design of induction-delay-expression. Male rats were implanted for telemetered blood pressure (BP) recording. During induction (I), low doses of subcutaneous or intracerebroventricular Ang II were delivered for 1 week, and then the rats were rested for 1 week (delay [D]) to ensure that any exogenous Ang II was metabolized. After this, a second higher dose of Ang II was given subcutaneously for 2 weeks (expression [E]). During I and D, the low doses of Ang II had no sustained effects on BP. However, during E, the Ang II–induced BP increase was greater in the groups that had received low doses of Ang II during I in comparison to the group receiving saline during I. Central angiotensin type 1 receptor antagonist delivery blocked this sensitization. Brain tissue collected at the end of D and E showed increased mRNA expression of several RAAS components in key forebrain regions of sensitized rats. Fos-related antigen–like immunoreactivity was also increased at the end of E in the sensitized forebrain. These results indicate that subpressor doses of Ang II act on the brain to sensitize the hypertensive response to subsequent Ang II and that sensitization is associated with altered expression of RAAS components in forebrain cardiovascular control structures.


American Journal of Physiology-heart and Circulatory Physiology | 2008

Central estrogen inhibition of angiotensin II-induced hypertension in male mice and the role of reactive oxygen species

Baojian Xue; Yuanzi Zhao; Alan Kim Johnson; Meredith Hay

It has been shown that reactive oxygen species (ROS) contribute to the central effect of ANG II on blood pressure (BP). Recent studies have implicated an antihypertensive action of estrogen in ANG II-infused female mice. The present study used in vivo telemetry recording and in vitro living mouse brain slices to test the hypothesis that the central activation of estrogen receptors in male mice inhibits ANG II-induced hypertension via the modulation of the central ROS production. In male wild-type mice, the systemic infusion of ANG II induced a significant increase in BP (Delta30.1 +/- 2.5 mmHg). Either central infusion of Tempol or 17beta-estradiol (E2) attenuated the pressor effect of ANG II (Delta10.9 +/- 2.3 and Delta4.5 +/- 1.4 mmHg), and the protective effect of E2 was prevented by the coadministration of an estrogen receptor, antagonist ICI-182780 (Delta23.6 +/- 3.1 mmHg). Moreover, the ganglionic blockade on day 7 after the start of ANG II infusions resulted in a smaller reduction of BP in central Tempol- and in central E2-treated males, suggesting that estrogen inhibits the central ANG II-induced increases in sympathetic outflow. In subfornical organ slices, the application of ANG II resulted in a 21.5 +/- 2.5% increase in ROS production. The coadministration of irbesartan, an ANG II type 1 receptor antagonist, or the preincubation of brain slices with Tempol blocked ANG II-induced increases in ROS production (-1.8 +/- 1.6% and -1.0 +/- 1.8%). The ROS response to ANG II was also blocked by E2 (-3.2 +/- 2.4%). The results suggest that the central actions of E2 are involved in the protection from ANG II-induced hypertension and that estrogen modulation of the ANG II-induced effects may involve interactions with ROS production.


Hypertension | 2012

Aldosterone Acting Through the Central Nervous System Sensitizes Angiotensin II-Induced Hypertension

Baojian Xue; Zhongming Zhang; Camila F. Roncari; Fang Guo; Alan Kim Johnson

Previous studies have shown that preconditioning rats with a nonpressor dose of angiotensin II (Ang II) sensitizes the pressor response produced by later treatment with a higher dose of Ang II and that Ang II and aldosterone (Aldo) can modulate each other’s pressor effects through actions involving the central nervous system. The current studies tested whether Aldo can cross-sensitize the pressor actions of Ang II to enhance hypertension by employing an induction–delay–expression experimental design. Male rats were implanted for telemetered blood pressure recording. During induction, subpressor doses of either subcutaneous or intracerebroventricular Aldo were delivered for 1 week. Rats were then rested for 1 week (delay) to assure that any exogenous Aldo was metabolized. After this, Ang II was given subcutaneously for 2 weeks (expression). During induction and delay, Aldo had no sustained effect on blood pressure. However, during expression, Ang II-induced hypertension was greater in the groups receiving subcutaneous or intracerebroventricular Aldo during induction in comparison with those groups receiving vehicle. Central administration of mineralocorticoid receptor antagonist blocked sensitization. Brain tissue collected at the end of delay and expression showed increased mRNA expression of several renin–angiotensin–aldosterone system components in cardiovascular-related forebrain regions of cross-sensitized rats. Cultured subfornical organ neurons preincubated with Aldo displayed greater increases in [Ca2+]i after Ang II treatment, and there was a greater Fra-like immunoreactivity present at the end of expression in cardiovascular-related forebrain structures. Taken together, these results indicate that Aldo pretreatment cross-sensitizes the development of Ang II-induced hypertension probably by mechanisms that involve the central nervous system.


American Journal of Physiology-heart and Circulatory Physiology | 2009

Sex differences and central protective effect of 17β-estradiol in the development of aldosterone/NaCl-induced hypertension

Baojian Xue; Daniel Badauê‐Passos; Fang Guo; Celso E. Gomez-Sanchez; Meredith Hay; Alan Kim Johnson

The present study tested the hypotheses that male and female rats respond differently to subcutaneous infusions of aldosterone (Aldo; 1.8 microg.kg(-1).h(-1), 1% NaCl to drink; 28 days) and that central estrogen plays a protective role against the development of hypertension. In rats with blood pressure (BP) and heart rate (HR) measured by Data Sciences International telemetry, chronic Aldo/NaCl treatment induced a greater increase in BP in males (Delta25.4 +/- 2.4 mmHg) than in females (Delta7.1 +/- 2.2 mmHg). Gonadectomy augmented Aldo/NaCl-induced hypertension in females (Delta18.2 +/- 2.0 mmHg) but had no effect in males (Delta23.1 +/- 2.9 mmHg). Immunohistochemistry for Fra-like activity was higher in the paraventricular nucleus of intact males, castrated males, and ovariectomized (OVX) females compared with intact females after 28 days of Aldo/NaCl treatment. In intact males, central 17beta-estradiol (E(2)) inhibited the Aldo/NaCl increase in BP (Delta10.5 +/- 0.8) compared with that in central vehicle plus systemic Aldo/NaCl (Delta26.1 +/- 2.5 mmHg) rats. Combined administration of E(2) and estrogen receptor antagonist ICI182780 (ICI) blocked the protective effect of E(2) (Delta23.2 +/- 2.4 mmHg). In intact females central, but not peripheral, infusions of ICI augmented the Aldo/NaCl (Delta20.4 +/- 1.8 mmHg) BP increase. Finally, ganglionic blockade after Aldo infusions resulted in a smaller reduction in BP in intact females (-23.9 +/- 2.5 mmHg) and in central estrogen-treated males (-30.2 +/- 1.0 mmHg) compared with other groups (intact males, -39.3 +/- 3.4; castrated males, -41.8 +/- 1.9; intact males with central E(2) + ICI, -42.3 +/- 2.1; OVX females, -40.3 +/- 3.3; and intact females with central ICI, -39.1 +/- 1.3 mmHg). Chronic Aldo infusion produced increases in NaCl intake and decreases in HR that were both similar in all groups. Taken together, the results indicate that central estrogen plays a protective role in the development of Aldo/NaCl-induced hypertension and that this may result from reduced sympathetic outflow.


American Journal of Physiology-heart and Circulatory Physiology | 2012

PVN adenovirus-siRNA injections silencing either NOX2 or NOX4 attenuate aldosterone/NaCl-induced hypertension in mice

Baojian Xue; Terry G. Beltz; Ralph F. Johnson; Fang Guo; Meredith Hay; Alan Kim Johnson

Mineralocorticoid excess increases superoxide production by activating NADPH oxidase (NOX), and intracerebroventricular infusions of NADPH oxidase inhibitors attenuate aldosterone (Aldo)/salt-induced hypertension. It has been hypothesized that increased reactive oxygen species (ROS) in the brain may be a key mechanism in the development of hypertension. The present study investigated the brain regional specificity of NADPH oxidase and the role of NOX2 and NOX4 NADPH oxidase subunits in the hypothalamic paraventricular nucleus (PVN) in Aldo/salt-induced hypertension. PVN injections of adenoviral vectors expressing small interfering (si)RNA targeting NOX2 (AdsiRNA-NOX2) or NOX4 (AdsiRNA-NOX4) mRNAs were used to knock down NOX2 and NOX4 proteins. Three days later, delivery of Aldo (0.2 mg·kg(-1)·day(-1) sc) via osmotic pump commenced and 1% NaCl was provided in place of water. PVN injections of either AdsiRNA-NOX2 or AdsiRNA-NOX4 significantly attenuated the development of Aldo/NaCl-induced hypertension. In an additional study, Aldo/salt-induced hypertension was also significantly attenuated in NOX2 (genomic) knockout mice compared with wild-type controls. When animals from both functional studies underwent ganglionic blockade, there was a reduced fall in blood pressure in the NOX2 and NOX4 knockdown/knockout mice. Western blot analyses of the PVN of siRNA-NOX2- or siRNA-NOX4-injected mice confirmed a marked reduction in the expression of NOX2 or NOX4 protein. In cultured PVN neurons, silencing either NOX2 or NOX4 protein production by culturing PVN cells with siRNA-NOX2 or siRNA-NOX4 attenuated Aldo-induced ROS. These data indicate that both NOX2 and NOX4 in the PVN contribute to elevated sympathetic activity and the hypertensivogenic actions induced by mineralocorticoid excess.


Hypertension | 2016

Leptin Mediates High-Fat Diet Sensitization of Angiotensin II–Elicited Hypertension by Upregulating the Brain Renin–Angiotensin System and Inflammation

Baojian Xue; Yang Yu; Zhongming Zhang; Fang Guo; Terry G. Beltz; Robert L. Thunhorst; Robert B. Felder; Alan Kim Johnson

Obesity is characterized by increased circulating levels of the adipocyte-derived hormone leptin, which can increase sympathetic nerve activity and raise blood pressure. A previous study revealed that rats fed a high-fat diet (HFD) have an enhanced hypertensive response to subsequent angiotensin II administration that is mediated at least, in part, by increased activity of brain renin–angiotensin system and proinflammatory cytokines. This study tested whether leptin mediates this HFD-induced sensitization of angiotensin II–elicited hypertension by interacting with brain renin–angiotensin system and proinflammatory cytokine mechanisms. Rats fed an HFD for 3 weeks had significant increases in white adipose tissue mass, plasma leptin levels, and mRNA expression of leptin and its receptors in the lamina terminalis and hypothalamic paraventricular nucleus. Central infusion of a leptin receptor antagonist during HFD feeding abolished HFD sensitization of angiotensin II–elicited hypertension. Furthermore, central infusion of leptin mimicked the sensitizing action of HFD. Concomitant central infusions of the angiotensin II type 1 receptor antagonist irbesartan, the tumor necrosis factor-&agr; synthesis inhibitor pentoxifylline, or the inhibitor of microglial activation minocycline prevented the sensitization produced by central infusion of leptin. RT-PCR analysis indicated that either HFD or leptin administration upregulated mRNA expression of several components of the renin–angiotensin system and proinflammatory cytokines in the lamina terminalis and paraventricular nucleus. The leptin antagonist and the inhibitors of angiotensin II type 1 receptor, tumor necrosis factor-&agr; synthesis, and microglial activation all reversed the expression of these genes. The results suggest that HFD-induced sensitization of angiotensin II–elicited hypertension is mediated by leptin through upregulation of central renin–angiotensin system and proinflammatory cytokines.


American Journal of Physiology-heart and Circulatory Physiology | 2009

Protective actions of estrogen on angiotensin II-induced hypertension: role of central nitric oxide

Baojian Xue; Minati Singh; Fang Guo; Meredith Hay; Alan Kim Johnson

The present study tested the hypotheses that 1) nitric oxide (NO) is involved in attenuated responses to ANG II in female mice, and 2) there is differential expression of neuronal NO synthase (nNOS) in the subfornical organ (SFO) and paraventricular nucleus (PVN) in response to systemic infusions of ANG II in males vs. females. Aortic blood pressure (BP) was measured in conscious mice with telemetry implants. N(G)-nitro-l-arginine methyl ester (l-NAME; 100 microg x kg(.-1)day(-1)), an inhibitor of NOS, was administrated into the lateral cerebral ventricle for 14 days before and during ANG II pump implantation. Central infusion of l-NAME augmented the pressor effects of systemic ANG II in females (Delta21.5 + or - 2.2 vs. Delta9.2 + or - 1.5 mmHg) but not in males (Delta29.4 + or - 2.5 vs. Delta30.1 + or - 2.5 mmHg). Central administration of N(5)-(1-imino-3-butenyl)-l-ornithine (l-VNIO), a selective nNOS inhibitor, also significantly potentiated the increase in BP induced by ANG II in females (Delta17.5 + or - 3.2 vs. Delta9.2 + or - 1.5 mmHg). In gonadectomized mice, central l-NAME infusion did not affect the pressor response to ANG II in either males or females. Ganglionic blockade after ANG II infusion resulted in a greater reduction in BP in central l-NAME- or l-VNIO-treated females compared with control females. Western blot analysis of nNOS protein expression indicated that levels were approximately 12-fold higher in both the SFO and PVN of intact females compared with those in intact males. Seven days of ANG II treatment resulted in a further increase in nNOS protein expression only in intact females (PVN, to approximately 51-fold). Immunohistochemical studies revealed colocalization of nNOS and estrogen receptors in the SFO and PVN. These results suggest that NO attenuates the increase in BP induced by ANG II through reduced sympathetic outflow in females and that increased nNOS protein expression associated with the presence of female sex hormones plays a protective role against ANG II-induced hypertension in female mice.

Collaboration


Dive into the Baojian Xue's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert B. Felder

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Yang Yu

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Daniel Badaue-Passos

Universidade Federal de Sergipe

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge