Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Baoli Hu is active.

Publication


Featured researches published by Baoli Hu.


Nature | 2011

SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression

Zhihu Ding; Chang Jiun Wu; Gerald C. Chu; Yonghong Xiao; Jingfang Zhang; Samuel R. Perry; Emma S. Labrot; Xiaoqiu Wu; Rosina T. Lis; Yujin Hoshida; David Hiller; Baoli Hu; Shan Jiang; Hongwu Zheng; Alexander H. Stegh; Kenneth L. Scott; Sabina Signoretti; Nabeel Bardeesy; Y. Alan Wang; David E. Hill; Todd R. Golub; Meir J. Stampfer; Wing Hung Wong; Massimo Loda; Lorelei A. Mucci; Lynda Chin; Ronald A. DePinho

Effective clinical management of prostate cancer (PCA) has been challenged by significant intratumoural heterogeneity on the genomic and pathological levels and limited understanding of the genetic elements governing disease progression. Here, we exploited the experimental merits of the mouse to test the hypothesis that pathways constraining progression might be activated in indolent Pten-null mouse prostate tumours and that inactivation of such progression barriers in mice would engender a metastasis-prone condition. Comparative transcriptomic and canonical pathway analyses, followed by biochemical confirmation, of normal prostate epithelium versus poorly progressive Pten-null prostate cancers revealed robust activation of the TGFβ/BMP–SMAD4 signalling axis. The functional relevance of SMAD4 was further supported by emergence of invasive, metastatic and lethal prostate cancers with 100% penetrance upon genetic deletion of Smad4 in the Pten-null mouse prostate. Pathological and molecular analysis as well as transcriptomic knowledge-based pathway profiling of emerging tumours identified cell proliferation and invasion as two cardinal tumour biological features in the metastatic Smad4/Pten-null PCA model. Follow-on pathological and functional assessment confirmed cyclin D1 and SPP1 as key mediators of these biological processes, which together with PTEN and SMAD4, form a four-gene signature that is prognostic of prostate-specific antigen (PSA) biochemical recurrence and lethal metastasis in human PCA. This model-informed progression analysis, together with genetic, functional and translational studies, establishes SMAD4 as a key regulator of PCA progression in mice and humans.


Cell | 2014

Yap1 activation enables bypass of oncogenic KRAS addiction in pancreatic cancer

Avnish Kapoor; Wantong Yao; Haoqiang Ying; Sujun Hua; Alison Liewen; Qiuyun Wang; Yi Zhong; Chang Jiun Wu; Anguraj Sadanandam; Baoli Hu; Qing Chang; Gerald C. Chu; Ramsey Al-Khalil; Shan Jiang; Hongai Xia; Eliot Fletcher-Sananikone; Carol Lim; Gillian I. Horwitz; Andrea Viale; Piergiorgio Pettazzoni; Nora Sanchez; Huamin Wang; Alexei Protopopov; Jianhua Zhang; Timothy P. Heffernan; Randy L. Johnson; Lynda Chin; Y. Alan Wang; Giulio Draetta; Ronald A. DePinho

Activating mutations in KRAS are among the most frequent events in diverse human carcinomas and are particularly prominent in human pancreatic ductal adenocarcinoma (PDAC). An inducible Kras(G12D)-driven mouse model of PDAC has established a critical role for sustained Kras(G12D) expression in tumor maintenance, providing a model to determine the potential for and the underlying mechanisms of Kras(G12D)-independent PDAC recurrence. Here, we show that some tumors undergo spontaneous relapse and are devoid of Kras(G12D) expression and downstream canonical MAPK signaling and instead acquire amplification and overexpression of the transcriptional coactivator Yap1. Functional studies established the role of Yap1 and the transcriptional factor Tead2 in driving Kras(G12D)-independent tumor maintenance. The Yap1/Tead2 complex acts cooperatively with E2F transcription factors to activate a cell cycle and DNA replication program. Our studies, along with corroborating evidence from human PDAC models, portend a novel mechanism of escape from oncogenic Kras addiction in PDAC.


Journal of Biological Chemistry | 2006

MDMX Overexpression Prevents p53 Activation by the MDM2 Inhibitor Nutlin

Baoli Hu; Daniele M. Gilkes; Bilal Farooqi; Said M. Sebti; Jiandong Chen

The p53 tumor suppressor plays a key role in maintaining genomic stability and protection against malignant transformation. MDM2 and MDMX are both p53-binding proteins that regulate p53 stability and activity. Recent development of the MDM2 inhibitor Nutlin 3 has greatly facilitated functional analysis of MDM2-p53 binding. We found that although MDMX is homologous to MDM2 and binds to the same region on p53 N terminus, Nutlin does not disrupt p53-MDMX interaction. The ability of Nutlin to activate p53 is compromised in tumor cells overexpressing MDMX. Combination of Nutlin with MDMX siRNA resulted in synergistic activation of p53 and growth arrest. These results suggest that MDMX is also a valid target for p53 activation in tumor cells. Development of novel compounds that are MDMX-specific or optimized for dual-inhibition of MDM2 and MDMX are necessary to achieve full activation of p53 in tumor cells.


Nature | 2012

Passenger deletions generate therapeutic vulnerabilities in cancer

Florian Muller; Simona Colla; Elisa Aquilanti; Veronica E. Manzo; Giannicola Genovese; Jaclyn Lee; Daniel Eisenson; Rujuta Narurkar; Pingna Deng; Luigi Nezi; Michelle Lee; Baoli Hu; Jian Hu; Ergun Sahin; Derrick Sek Tong Ong; Eliot Fletcher-Sananikone; Lawrence Kwong; Cameron Brennan; Y. Alan Wang; Lynda Chin; Ronald A. DePinho

Inactivation of tumour-suppressor genes by homozygous deletion is a prototypic event in the cancer genome, yet such deletions often encompass neighbouring genes. We propose that homozygous deletions in such passenger genes can expose cancer-specific therapeutic vulnerabilities when the collaterally deleted gene is a member of a functionally redundant family of genes carrying out an essential function. The glycolytic gene enolase 1 (ENO1) in the 1p36 locus is deleted in glioblastoma (GBM), which is tolerated by the expression of ENO2. Here we show that short-hairpin-RNA-mediated silencing of ENO2 selectively inhibits growth, survival and the tumorigenic potential of ENO1-deleted GBM cells, and that the enolase inhibitor phosphonoacetohydroxamate is selectively toxic to ENO1-deleted GBM cells relative to ENO1-intact GBM cells or normal astrocytes. The principle of collateral vulnerability should be applicable to other passenger-deleted genes encoding functionally redundant essential activities and provide an effective treatment strategy for cancers containing such genomic events.


Cancer Research | 2007

Efficient p53 Activation and Apoptosis by Simultaneous Disruption of Binding to MDM2 and MDMX

Baoli Hu; Daniele M. Gilkes; Jiandong Chen

The p53 tumor suppressor plays a key role in protection against malignant transformation. MDM2 and MDMX are important regulators of the transcriptional activity and stability of p53 by binding to its NH(2) terminus. Recent studies suggest that inhibition of both MDM2 and MDMX is necessary for robust activation of p53 in certain tumor cells. However, small-molecule MDM2 inhibitors such as Nutlin fail to inhibit MDMX despite significant homology between the two proteins. The therapeutic efficacy of such compounds may be compromised by MDMX overexpression. To evaluate the feasibility and biological effects of simultaneously disrupting p53 binding to MDM2 and MDMX, we used phage display to identify a novel peptide that can inhibit p53 interactions with MDM2 (IC(50) = 10 nmol/L) and MDMX (IC(50) = 100 nmol/L). Expression of a scaffold protein (thioredoxin) displaying this peptide sequence by adenovirus disrupts both MDM2 and MDMX interaction with p53, resulting in efficient p53 activation, cell cycle arrest, and apoptosis of tumor cells overexpressing MDM2 and MDMX. Intratumoral injection of the adenovirus also induces growth suppression of tumor xenografts in mice in a p53-dependent fashion. These results show the therapeutic potential of targeting both MDM2 and MDMX in cancer, and provide a novel structural motif for the design of potent p53 activators.


Cancer Discovery | 2016

Targeting YAP-Dependent MDSC Infiltration Impairs Tumor Progression.

Guocan Wang; Xin Lu; Prasenjit Dey; Pingna Deng; Chia Chin Wu; Shan Jiang; Zhuangna Fang; Kun Zhao; Ramakrishna Konaparthi; Sujun Hua; Jianhua Zhang; Elsa M. Li-Ning-Tapia; Avnish Kapoor; Chang Jiun Wu; Neelay Patel; Zhenglin Guo; Vandhana Ramamoorthy; Trang Tieu; Tim Heffernan; Di Zhao; Xiaoying Shang; Sunada Khadka; Pingping Hou; Baoli Hu; Eun Jung Jin; Wantong Yao; Xiaolu Pan; Zhihu Ding; Yanxia Shi; Liren Li

UNLABELLED The signaling mechanisms between prostate cancer cells and infiltrating immune cells may illuminate novel therapeutic approaches. Here, utilizing a prostate adenocarcinoma model driven by loss of Pten and Smad4, we identify polymorphonuclear myeloid-derived suppressor cells (MDSC) as the major infiltrating immune cell type, and depletion of MDSCs blocks progression. Employing a novel dual reporter prostate cancer model, epithelial and stromal transcriptomic profiling identified CXCL5 as a cancer-secreted chemokine to attract CXCR2-expressing MDSCs, and, correspondingly, pharmacologic inhibition of CXCR2 impeded tumor progression. Integrated analyses identified hyperactivated Hippo-YAP signaling in driving CXCL5 upregulation in cancer cells through the YAP-TEAD complex and promoting MDSC recruitment. Clinicopathologic studies reveal upregulation and activation of YAP1 in a subset of human prostate tumors, and the YAP1 signature is enriched in primary prostate tumor samples with stronger expression of MDSC-relevant genes. Together, YAP-driven MDSC recruitment via heterotypic CXCL5-CXCR2 signaling reveals an effective therapeutic strategy for advanced prostate cancer. SIGNIFICANCE We demonstrate a critical role of MDSCs in prostate tumor progression and discover a cancer cell nonautonomous function of the Hippo-YAP pathway in regulation of CXCL5, a ligand for CXCR2-expressing MDSCs. Pharmacologic elimination of MDSCs or blocking the heterotypic CXCL5-CXCR2 signaling circuit elicits robust antitumor responses and prolongs survival.


Genes & Development | 2012

STAR RNA-binding protein Quaking suppresses cancer via stabilization of specific miRNA

An Jou Chen; Ji Hye Paik; Hailei Zhang; Sachet A. Shukla; Richard M. Mortensen; Jian Hu; Haoqiang Ying; Baoli Hu; Jessica A. Hurt; Natalie G. Farny; Caroline Dong; Yonghong Xiao; Y. Alan Wang; Pamela A. Silver; Lynda Chin; Shobha Vasudevan; Ronald A. DePinho

Multidimensional cancer genome analysis and validation has defined Quaking (QKI), a member of the signal transduction and activation of RNA (STAR) family of RNA-binding proteins, as a novel glioblastoma multiforme (GBM) tumor suppressor. Here, we establish that p53 directly regulates QKI gene expression, and QKI protein associates with and leads to the stabilization of miR-20a; miR-20a, in turn, regulates TGFβR2 and the TGFβ signaling network. This pathway circuitry is substantiated by in silico epistasis analysis of its components in the human GBM TCGA (The Cancer Genome Atlas Project) collection and by their gain- and loss-of-function interactions in in vitro and in vivo complementation studies. This p53-QKI-miR-20a-TGFβ pathway expands our understanding of the p53 tumor suppression network in cancer and reveals a novel tumor suppression mechanism involving regulation of specific cancer-relevant microRNAs.


Cancer Cell | 2015

Telomere Dysfunction Drives Aberrant Hematopoietic Differentiation and Myelodysplastic Syndrome

Simona Colla; Derrick Sek Tong Ong; Yamini Ogoti; Matteo Marchesini; Nipun A. Mistry; Karen Clise-Dwyer; Sonny A. Ang; Paola Storti; Andrea Viale; Nicola Giuliani; Kathryn Ruisaard; Irene Ganan Gomez; Christopher A. Bristow; Marcos R. Estecio; David C. Weksberg; Yan Wing Ho; Baoli Hu; Giannicola Genovese; Piergiorgio Pettazzoni; Asha S. Multani; Shan Jiang; Sujun Hua; Michael C. Ryan; Alessandro Carugo; Luigi Nezi; Yue Wei; Hui Yang; Marianna D’Anca; Li Zhang; Sarah Gaddis

Myelodysplastic syndrome (MDS) risk correlates with advancing age, therapy-induced DNA damage, and/or shorter telomeres, but whether telomere erosion directly induces MDS is unknown. Here, we provide the genetic evidence that telomere dysfunction-induced DNA damage drives classical MDS phenotypes and alters common myeloid progenitor (CMP) differentiation by repressing the expression of mRNA splicing/processing genes, including SRSF2. RNA-seq analyses of telomere dysfunctional CMP identified aberrantly spliced transcripts linked to pathways relevant to MDS pathogenesis such as genome stability, DNA repair, chromatin remodeling, and histone modification, which are also enriched in mouse CMP haploinsufficient for SRSF2 and in CD34(+) CMML patient cells harboring SRSF2 mutation. Together, our studies establish an intimate link across telomere biology, aberrant RNA splicing, and myeloid progenitor differentiation.


Journal of Interferon and Cytokine Research | 2004

Combination of Targeting Gene-ViroTherapy with 5-FU Enhances Antitumor Efficacy in Malignant Colorectal Carcinoma

Songbo Qiu; Hongmei Ruan; Zifei Pei; Baoli Hu; Ping Lan; Jin-Hui Wang; Zilai Zhang; Jinfa Gu; Lanying Sun; Cheng Qian; Xinyuan Liu; Yipeng Qi

To improve the therapeutic effect of ONYX015, an E1B55kD-deleted replication-competent adenovirus, ZD55 was constructed and armed with the therapeutic gene hTRAIL to form ZD55-hTRAIL, which was used for cancer therapy and which we call Targeting Gene-ViroTherapy. In vitro experiments with SW620, HCT116, and HT29 colorectal carcinoma cell lines demonstrated that they were all sensitive to ZD55-hTRAIL, and especially sensitive to ZD55-hTRAIL plus 5-fluorouracil (5-FU) treatment. In the SW620 xenograft tumor model, various treatment groups showed marked differences at week 11, with the tumor volume for the phosphate-buffered saline (PBS) treatment group >1700 mm3, for 5-FU > 1300 mm3, for ONYX015 1051.3 mm3, for ZD55-hTRAIL 600.05 mm3, and for ZD55-hTRAIL plus 5-FU 230.2 mm3. At the end of week 14, tumor-bearing mice in the other groups almost all died, whereas all the mice in the combined treatment group were alive, with one mouse tumor free. By transmission electron microscopy (TEM) assay, most tumor cells treated with ONYX015 or with ZD55-hTRAIL singly or in combination with 5-FU were lysed due to viral propagation. RT-PCR analysis and immunohistochemistry examination revealed that hTRAIL was expressed in ZD55-hTRAIL-treated SW620 tumor tissue. Furthermore, no detectable hepatoxicity was found by serum enzyme level analysis. These results suggest that ZD55-hTRAIL alone or in combination with 5-FU may have potential clinical implications.


Proceedings of the National Academy of Sciences of the United States of America | 2013

From the Cover: Neutralization of terminal differentiation in gliomagenesis.

Jian Hu; Allen L. Ho; Liang Yuan; Baoli Hu; Sujun Hua; Soyoon Sarah Hwang; Junxia Zhang; Tianyi Hu; Hongwu Zheng; Boyi Gan; Gongxiong Wu; Yaoqi Alan Wang; Lynda Chin; Ronald A. DePinho

An immature state of cellular differentiation—characterized by stem cell–like tendencies and impaired differentiation—is a hallmark of cancer. Using glioblastoma multiforme (GBM) as a model system, we sought to determine whether molecular determinants that drive cells toward terminal differentiation are also genetically targeted in carcinogenesis and whether neutralizing such genes also plays an active role to reinforce the impaired differentiation state and promote malignancy. To that end, we screened 71 genes with known roles in promoting nervous system development that also sustain copy number loss in GBM through antineoplastic assay and identified A2BP1 (ataxin 2 binding protein 1, Rbfox1), an RNA-binding and splicing regulator that is deleted in 10% of GBM cases. Integrated in silico analysis of GBM profiles to elucidate the A2BP1 pathway and its role in glioma identified myelin transcription factor 1-like (Myt1L) as a direct transcriptional regulator of A2BP1. Reintroduction of A2BP1 or Myt1L in GBM cell lines and glioma stem cells profoundly inhibited tumorigenesis in multiple assays, and conversely, shRNA-mediated knockdown of A2BP1 or Myt1L in premalignant neural stem cells compromised neuronal lineage differentiation and promoted orthotopic tumor formation. On the mechanistic level, with the top-represented downstream target TPM1 as an illustrative example, we demonstrated that, among its multiple functions, A2BP1 serves to regulate TPM1’s alternative splicing to promote cytoskeletal organization and terminal differentiation and suppress malignancy. Thus, in addition to the activation of self-renewal pathways, the neutralization of genetic programs that drive cells toward terminal differentiation may also promote immature and highly plastic developmental states that contribute to the aggressive malignant properties of GBM.

Collaboration


Dive into the Baoli Hu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lynda Chin

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sujun Hua

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Y. Alan Wang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Florian Muller

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jianhua Zhang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Qianghu Wang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Shan Jiang

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge