Baoping Cao
Nankai University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Baoping Cao.
Epigenomics | 2012
Yan Jia; Yunsheng Yang; Malcolm V. Brock; Baoping Cao; Qimin Zhan; Yazhuo Li; Yuanzi Yu; James G. Herman; Mingzhou Guo
AIMS To explore the epigenetic changes and the function of TFPI-2 in esophageal cancer. MATERIALS & METHODS Nine esophageal cancer cell lines, nine normal esophageal mucosa, 60 esophageal dysplasia and 106 advanced esophageal cancer samples were included in this study. TFPI-2 methylation was examined by methylation-specific PCR. TFPI-2 expression was evaluated by immunohistochemistry in tissue samples. The effect of TFPI-2 on proliferation, apoptosis, invasion and migration was analyzed by colony formation assay, western blot assay, transwell assay and flow cytometric analysis. RESULTS TFPI-2 expression was regulated by promoter region hypermethylation in human esophageal cancer cell lines, and TFPI-2 expression is inversely correlated with methylation in primary cancer. Methylation was found in 28.2, 33.3 and 33.3% of grade 1, 2 and 3 esophageal dysplasia, and 67% of primary esophageal cancer, but no methylation was found in normal mucosa. Methylation is significantly related to tumor differentiation. Inhibition of invasion, migration, colony formation and proliferation, and induction of apoptosis occurred with the restoration of TFPI-2 expression in the KYSE70 cell line. CONCLUSION TFPI-2 is frequently methylated in esophageal cancer with a progression tendency. TFPI-2 is a potential tumor suppressor in esophageal cancer.
Tumor Biology | 2012
Yuanzi Yu; Dongtao Yin; Mohammad O. Hoque; Baoping Cao; Yan Jia; Yunsheng Yang; Mingzhou Guo
The purpose of this study is to determine the epigenetic changes and function of High in Normal-1 (HIN-1) in non-small cell lung cancer (NSCLC). HIN-1 expression was examined by semiquantitative RT-PCR before and after 5-aza-2′-deoxycytidine (5-aza) treatment in NSCLC cell lines. Promoter methylation status of HIN-1 was tested by methylation-specific PCR (MSP). Effect of forced expression of HIN-1 on different key molecules of AKT signaling pathway was tested by Western Blot analysis in H157 and H23 cell lines. Promoter methylations are inversely correlated with expression of HIN-1 in eight (H23, H157, 95D, H1299, H358, H1752, H460, A549) of ten NSCLC cell lines and re-expression was observed by 5-aza treatment. We then tested promoter methylation of HIN-1 in primary NSCLC tissues. Methylation was detected in 73 out of 152 (48%) NSCLC cases. Forced expression of HIN-1in NSCLC cell lines inhibited colony formation and induce apoptosis. Furthermore, overexpression of HIN-1 reduces the expression of phosphorated-AKT (p-AKT), c-myc, Bcl-2 and cyclinD1 while Bax was increased. Our data suggest that HIN-1 is a potential tumor suppressor gene in NSCLC, silenced by promoter hypermethylation and negatively regulate AKT signaling pathway.
Oncotarget | 2016
Meiying Zhang; Enqiang Linghu; Qimin Zhan; Tao He; Baoping Cao; Malcolm V. Brock; James G. Herman; Rong Xiang; Mingzhou Guo
Esophageal cancer is one of the most common malignancies worldwide. DACT2 is frequently methylated in human lung, hepatic, gastric and thyroid cancers. The methylation status and function of DACT2 remain to be elucidated in human esophageal cancer. Ten esophageal cancer cell lines, 42 cases of dysplasia and 126 cases of primary esophageal cancer samples were analyzed in this study. The expression of DACT2 was detected in YES2 cells, while reduced DACT2 expression levels were found in TE8 and KYSE70 cells, and complete loss of DACT2 expression was found in KYSE30, KYSE140, KYSE150, KYSE410, KYSE450, TE3 and TE7 cells. Loss of expression or reduced expression of DACT2 correlated with promoter region hypermethylation in esophageal cancer cells. Restoration of DACT2 expression was induced by 5-aza-2′-deoxycytidine. In human primary esophageal squamous carcinoma, 69% (87/126) of samples were methylated. Methylation of DACT2 was significantly associated with tumor stage and metastasis (P < 0.01, P < 0.05). DACT2 suppressed colony formation, cell migration and invasion in esophageal cancer cells, and it also suppressed esophageal cancer cell xenograft growth. DACT2 inhibited Wnt signaling in human esophageal cancer cells. In conclusion, DACT2 is frequently methylated in human esophageal cancer and its expression is regulated by promoter region methylation. DACT2 suppresses esophageal cancer growth by inhibiting Wnt signaling.
Oncotarget | 2015
Yan Jia; Baoping Cao; Yunsheng Yang; Enqiang Linghu; Qimin Zhan; Youyong Lu; Yingyan Yu; James G. Herman; Mingzhou Guo
Naked cuticle homolog2 (NKD2) is located in chromosome 5p15.3, which is frequently loss of heterozygosity in human colorectal and gastric cancers. In order to understand the mechanism of NKD2 in gastric cancer development, 6 gastric cancer cell lines and 196 cases of human primary gastric cancer samples were involved. Methylation specific PCR (MSP), gene expression array, flow cytometry, transwell assay and xenograft mice model were employed in this study. The expression of NKD1 and NKD2 was silenced by promoter region hypermethylation. NKD1 and NKD2 were methylated in 11.7% (23/196) and 53.1% (104/196) in human primary gastric cancer samples. NKD2 methylation is associated with cell differentiation, TNM stage and distant metastasis significantly (all P < 0.05), and the overall survival time is longer in NKD2 unmethylated group compared to NKD2 methylated group (P < 0.05). Restoration of NKD2 expression suppressed cell proliferation, colony formation, cell invasion and migration, induced G2/M phase arrest, and sensitized cancer cells to docetaxel. NKD2 inhibits SOX18 and MMP-2,7,9 expression and suppresses BGC823 cell xenograft growth. In conclusion, NKD2 methylation may serve as a poor prognostic and chemo-sensitive marker in human gastric cancer. NKD2 impedes gastric cancer metastasis by inhibiting SOX18.
Journal of Thoracic Oncology | 2016
Baoping Cao; Weili Yang; Yongshuai Jin; Meiying Zhang; Tao He; Qimin Zhan; James G. Herman; Guanglin Zhong; Mingzhou Guo
Introduction Naked cuticle homolog 2 (NKD2) was found to be frequently methylated in human breast and gastric cancers. However, the epigenetic changes and mechanisms of NKD2 in human esophageal cancer remain unclear. Methods Nine esophageal cancer cell lines and 154 cases of primary esophageal cancer samples were analyzed using methylation‐specific polymerase chain reaction, immunohistochemical analysis, Western blot, and xenograft mouse models. Results Loss of NKD2 expression and complete methylation were found in KYSE150 and TE1 cells. Reduced NKD2 expression and partial methylation of the promoter region were observed in KYSE30, KYSE70, KYSE410, KYSE140, and COLO680 cells. High levels of NKD2 expression and unmethylation were detected in KYSE450 and TE8 cells. Reexpression of NKD2 was induced by 5‐aza‐2′‐deoxycytidine in cells in which NKD2 was not expressed or cells in which NKD2 expression was reduced. NKD2 was methylated in 53.2% of human primary esophageal cancer samples (82 of 154), and promoter region hypermethylation was significantly associated with reduced expression of NKD2 (p < 0.01). NKD2 methylation was associated with tumor, node, and metastasis stage and lymph node metastasis (p < 0.01). Our results suggest that NKD2 is regulated by promoter region methylation and that methylation of NKD2 may serve as a prognostic marker in esophageal cancer. Our further studies demonstrate that NKD2 suppresses cell proliferation, colony formation, cell invasion, and migration and also induces G1/S checkpoint arrest in esophageal cancer cells. NKD2 suppressed xenograft tumor growth and inhibited Wnt signaling in human esophageal cancer cells. Conclusions NKD2 is frequently methylated in human esophageal cancer, and the expression of NKD2 is regulated by promoter region methylation. NKD2 suppresses esophageal cancer progression by inhibiting Wnt signaling both in vitro and in vivo.
Discovery Medicine | 2013
Baoping Cao; Yunsheng Yang; Yuanming Pan; Yan Jia; Malcolm V. Brock; James G. Herman; Mingzhou Guo
Genes & Cancer | 2015
Yongshuai Jin; Baoping Cao; Meiying Zhang; Qimin Zhan; James G. Herman; Miao Yu; Mingzhou Guo
American Journal of Cancer Research | 2014
Wenji Yan; Xuefeng Liu; Yan Jia; Baoping Cao; Yingyan Yu; Youyong Lv; Malcolm V. Brock; Jame G Herman; Julien Licchesi; Yunsheng Yang; Mingzhou Guo
American Journal of Cancer Research | 2015
Sui Hu; Baoping Cao; Meiying Zhang; Enqiang Linghu; Qimin Zhan; Malcolm V. Brock; James G. Herman; Gaoping Mao; Mingzhou Guo
Discovery Medicine | 2016
Baoping Cao; Song N; Zhang M; Di C; Yunsheng Yang; Lu Y; Chen R; Lu Zj; Mingzhou Guo