Baoshan Zhu
Tsinghua University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Baoshan Zhu.
Engineering Computations | 2015
Lei Tan; Baoshan Zhu; Yuchuan Wang; Shuliang Cao; Shaobo Gui
Purpose – The purpose of this paper is to elucidate the detailed flow field and cavitation effect in the centrifugal pump volute at partial load condition. Design/methodology/approach – Unsteady flows in a centrifugal pump volute at non-cavitation and cavitation conditions are investigated by using a computation fluid dynamics framework combining the re-normalization group k-e turbulence model and the mass transport cavitation model. Findings – The flow field in pump volute is very complicated at part load condition with large pressure gradient and intensive vortex movement. Under cavitation conditions, the dominant frequency for most of the monitoring points in volute transit from the blade passing frequency to a lower frequency. Generally, the maximum amplitudes of pressure fluctuations in volute at serious cavitation condition is twice than that at non-cavitation condition because of the violent disturbances caused by cavitation shedding and explosion. Originality/value – The detailed flow field and ca...
Chinese Journal of Mechanical Engineering | 2014
Lei Tan; Baoshan Zhu; Shuliang Cao; Hao Bing; Yuming Wang
The existing research on improving the hydraulic performance of centrifugal pumps mainly focuses on the design method and the parameter optimization. The traditional design method for centrifugal impellers relies more on experience of engineers that typically only satisfies the continuity equation of the fluid. In this study, on the basis of the direct and inverse iteration design method which simultaneously solves the continuity and motion equations of the fluid and shapes the blade geometry by controlling the wrap angle, three centrifugal pump impellers are designed by altering blade wrap angles while keeping other parameters constant. The three-dimensional flow fields in three centrifugal pumps are numerically simulated, and the simulation results illustrate that the blade with larger wrap angle has more powerful control ability on the flow pattern in impeller. The three pumps have nearly the same pressure distributions at the small flow rate, but the pressure gradient increase in the pump with the largest wrap angle is smoother than the other two pumps at the design and large flow rates. The pump head and efficiency are also influenced by the blade wrap angle. The highest head and efficiency are also observed for the largest angle. An experiment rig is designed and built to test the performance of the pump with the largest wrap angle. The test results show that the wide space of its efficiency area and the stability of its operation ensure the excellent performance of the design method and verify the numerical analysis. The analysis on influence of the blade wrap angle for centrifugal pump performance in this paper can be beneficial to the optimization design of the centrifugal pump.
Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy | 2012
Lei Tan; Shuliang Cao; Yuming Wang; Baoshan Zhu
A combined direct and inverse iterative design method was developed for the hydraulic design of centrifugal pump impellers. This method is based on the fluid continuity and motion equations and solves for the meridional velocity taking into account the effects of the blade shape on the flow. The blade shape is drawn by point-by-point integration with blade thickening and smoothing using conformal mapping. Two examples designed using the direct and inverse iterative design method are compared to results using the traditional design method with significantly different meridional velocity distributions and three-dimensional blade shapes. Numerical simulations and tests show that the highest pump efficiency is 2.2% higher with this design method than with the traditional design method. The numerical results agree well with the experiments with a smoother flow pattern than with the traditional design, especially in the volute.
Chinese Journal of Mechanical Engineering | 2013
Hao Bing; Shuliang Cao; Lei Tan; Baoshan Zhu
During the process of designing the mixed-flow pump impeller, the meridional flow passage shape directly affects the obtained meridional flow field, which then has an influence on the three-dimensional impeller shape. However, the meridional flow passage shape is too complicated to be described by a simple formula for now. Therefore, reasonable parameter selection for the meridional flow passage is essential to the investigation. In order to explore the effects of the meridional flow passage shape on the impeller design and the hydraulic performance of the mixed-flow pump, the hub and shroud radius ratio (HSRR) of impeller and the outlet diffusion angle (ODA) of outlet zone are selected as the meridional flow passage parameters. 25 mixed-flow pump impellers, with specific speed of 496 under the design condition, are designed with various parameter combinations. Among these impellers, one with HSRR of 1.94 and ODA of 90° is selected to carry out the model test and the obtained experimental results are used to verify accuracies of the head and the hydraulic efficiency predicted by numerical simulation. Based on SIMPLE algorithm and standard k-ɛ two-equation turbulence model, the three-dimensional steady incompressible Reynolds averaged Navier-Stokes equations are solved and the effects of different parameters on hydraulic performance of mixed-flow pump impellers are analyzed. The analysis results demonstrate that there are optimal values of HSRR and ODA available, so the hydraulic performance and the internal flow of mixed-flow pumps can be improved by selecting appropriate values for the meridional flow passage parameters. The research on these two parameters, HSRR and ODA, has further illustrated influences of the meridional flow passage shape on the hydraulic performance of the mixed-flow pump, and is beneficial to improving the design of the mixed-flow pump impeller.
Journal of Fluids Engineering-transactions of The Asme | 2006
Ki-Deok Ro; Baoshan Zhu; Ho-Keun Kang
The velocity and pressure fields of a ships Weis-Fogh type propulsion mechanism are studied in this paper using an advanced vortex method. The wing (NACA0010 airfoil) and channel are approximated by source and vortex panels, and free vortices are introduced away from the body surfaces. The viscous diffusion of fluid is represented using the core-spreading model to the discrete vortices. The velocity is calculated on the basis of the generalized Biot-Savart law and the pressure field is calculated from an integral, based on the instantaneous velocity and vorticity distributions in the flow field. Two-dimensional unsteady viscous flow calculations of this propulsion mechanism are shown, and the calculated results agree qualitatively with the measured thrust and drag due to un-modeled large fluctuations in the measured data.
Engineering Computations | 2015
Zhiyi Yu; Baoshan Zhu; Shuliang Cao
Purpose – Interphase forces between the gas and liquid phases determine many phenomena in bubbly flow. For the interphase forces in a multiphase rotodynamic pump, the magnitude analysis was carried out within the framework of two-fluid model. The purpose of this paper is to clarify the relative importance of various interphase forces on the mixed transport process, and the findings herein will be a base for the future study on the mechanism of the gas blockage phenomenon, which is the most challenging issue for such pumps. Design/methodology/approach – Four types of interphase forces, i.e. drag force, lift force, virtual mass force and turbulent dispersion force (TDF) were taken into account. By comparing with the experiment in the respect of the head performance, the effectiveness of the numerical model was validated. In conditions of different inlet gas void fractions, bubble diameters and rotational speeds, the magnitude analyses were made for the interphase forces. Findings – The results demonstrate t...
Advances in Mechanical Engineering | 2014
Zhiyi Yu; Baoshan Zhu; Shuliang Cao; Ying Liu
To explore the effect of virtual mass force, the unsteady two-phase flow in a multiphase rotodynamic pump impeller was numerically simulated, where the inlet gas void fraction was 4.9%, 14.9%, and 25.2%, respectively. The drag force and the virtual mass force were accounted for and the cases with and without the latter one were both analyzed for comparison. The results show that the trajectories of the gas bubbles are influenced by the virtual mass force evidently in the inlet extended region. Due to the effect of virtual mass force, some gas will firstly move to the shroud before accumulating in the hub region of the impeller. The characteristic of the pump head was discussed and the results demonstrate that the virtual mass force can decrease the pump head and lead to its fluctuation. In addition, the comparison between the steady and unsteady simulation shows that the virtual mass effect can be found only by unsteady simulation.
Journal of Fluids Engineering-transactions of The Asme | 2010
Hong Wang; Baoshan Zhu
A numerical method including a macroscopic cavitation model based on the homogeneous flow theory and a microscopic cavitation model based on the bubble dynamics is proposed for the prediction of the impact force caused by cavitation bubble collapse in cavitating flows. A large eddy simulation solver, which is incorporated with a macroscopic cavitation model, is applied to simulate the unsteady cavitating flows. Based on the simulated flow field, the evolution of the cavitation bubbles is determined by a microscopic cavitation model from the resolution of a Rayleigh-Plesset equation including the effects of the surface tension, the viscosity and compressibility of fluid, the thermal conduction and radiation, the phase transition of water vapor at the interface, and the chemical reactions. The cavitation flow around a hydrofoil is simulated to validate the macroscopic cavitation model. A good quantitative agreement is obtained between the prediction and the experiment. The proposed numerical method is applied to predict the impact force at cavitation bubble collapse on a KT section in cavitating flows. It is found that the shock pressure caused by cavitation bubble collapse is very high. The impact force is predicted qualitatively compared with the experimental data.
Journal of Fluids Engineering-transactions of The Asme | 2015
Yuchuan Wang; Lei Tan; Binbin Wang; Shuliang Cao; Baoshan Zhu
Large eddy simulation (LES) approach was used to investigate jumps of primary frequency of shear layer flow over a cavity. Comparisons between computational results and experimental data show that LES is an appropriate approach to accurately capturing the critical values of velocity and cavity length of a frequency jump, as well as characteristics of the separated shear layer. The drive force of the self-sustained oscillation of impinging shear layer is fluid injection and reinjection. Flow patterns in the shear layer and cavity before and after the frequency jump demonstrate that the frequency jump is associated with vortex–corner interaction. Before frequency jump, a mature vortex structure is observed in shear layer. The vortex is clipped by impinging corner at approximately half of its size, which induces strong vortex–corner interaction. After frequency jump, successive vortices almost escape from impinging corner without the generation of a mature vortex, thereby indicating weaker vortex–corner interaction. Two wave peaks are observed in the shear layer after the frequency jump because of: (1) vortex–corner interaction and (2) centrifugal instability in cavity. Pressure fluctuations inside the cavity are well regulated with respect to time. Peak values of correlation coefficients close to zero time lags indicate the existence of standing waves inside the cavity. Transitions from a linear to a nonlinear process occurs at the same position (i.e., x/H = 0.7) for both velocity and cavity length variations. Slopes of linear region are solely the function of cavity length, thereby showing increased steepness with increased cavity length.
IOP Conference Series: Materials Science and Engineering | 2013
Zhiyi Yu; Baoshan Zhu; Shuliang Cao; Guoyu Wang
Based on the assumption of tiny bubbly flow, the gas-liquid two-phase unsteady flow in a multiphase rotodynamic pump was numerically simulated with two-fluid model. The two-phase transport process and the evolution characteristic of the pump head were analyzed. In the working conditions, the liquid flow rate was constant, and the IGVF (inlet gas volume fraction) was 0.05, 0.15 and 0.25, respectively. The k ω− based SST model was used for turbulence; the drag force and the added mass force were accounted for in the interfacial momentum transfer terms. Because the wrap angle of the blade was large, the hybrid mesh was adopted to guarantee high mesh quality. The simulation results demonstrate that two-fluid model can more reasonably capture the transport process than the homogeneous model; and the drag law should be corrected based on the mixture viscosity in high gas volume fraction conditions. If the liquid flow rate is constant, the increase of IGVF can raise the pressure in the inlet extended region, while the pressure in the outlet extended region will not be affected much, thus the pump head will go down. In addition, due to the fluctuation of gas volume fraction field, the pump head will also fluctuate around a stable value in the transport process.