Baoxin Li
Harbin Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Baoxin Li.
Nature Medicine | 2011
Baofeng Yang; Huixian Lin; Jiening Xiao; Yanjie Lu; Xiaobin Luo; Baoxin Li; Ying Zhang; Chaoqian Xu; Yunlong Bai; Huizhen Wang; Guohao Chen; Zhiguo Wang
MicroRNAs (miRNAs) are endogenous noncoding RNAs, about 22 nucleotides in length, that mediate post-transcriptional gene silencing by annealing to inexactly complementary sequences in the 3′-untranslated regions of target mRNAs. Our current understanding of the functions of miRNAs relies mainly on their tissue-specific or developmental stage-dependent expression and their evolutionary conservation, and therefore is primarily limited to their involvement in developmental regulation and oncogenesis. Of more than 300 miRNAs that have been identified, miR-1 and miR-133 are considered to be muscle specific. Here we show that miR-1 is overexpressed in individuals with coronary artery disease, and that when overexpressed in normal or infarcted rat hearts, it exacerbates arrhythmogenesis. Elimination of miR-1 by an antisense inhibitor in infarcted rat hearts relieved arrhythmogenesis. miR-1 overexpression slowed conduction and depolarized the cytoplasmic membrane by post-transcriptionally repressing KCNJ2 (which encodes the K+ channel subunit Kir2.1) and GJA1 (which encodes connexin 43), and this likely accounts at least in part for its arrhythmogenic potential. Thus, miR-1 may have important pathophysiological functions in the heart, and is a potential antiarrhythmic target.
Cardiovascular Research | 2009
Yanjie Lu; Yong Zhang; Hongli Shan; Zhenwei Pan; Xuelian Li; Baoxin Li; Chaoqian Xu; Bisi Zhang; Fengmin Zhang; De-Li Dong; Wuqi Song; Guo-Fen Qiao; Baofeng Yang
AIMS The present study was designed to investigate whether the beneficial effects of beta-blocker propranolol are related to regulation of microRNA miR-1. METHODS AND RESULTS We demonstrated that propranolol reduced the incidence of arrhythmias in a rat model of myocardial infarction by coronary artery occlusion. Overexpression of miR-1 was observed in ischaemic myocardium and strikingly, administration of propranolol reversed the up-regulation of miR-1 nearly back to the control level. In agreement with its miR-1-reducing effect, propranolol relieved myocardial injuries during ischaemia, restored the membrane depolarization and cardiac conduction slowing, by rescuing the expression of inward rectifying K(+) channel subunit Kir2.1 and gap junction channel connexin 43. Our results further revealed that the beta-adrenoceptor-cAMP-Protein Kinase A (PKA) signalling pathway contributed to the expression of miR-1, and serum response factor (SRF), which is known as one of the transcriptional enhancers of miR-1, was up-regulated in ischaemic myocardium. Moreover, propranolol inhibited the beta-adrenoceptor-cAMP-PKA signalling pathway and suppressed SRF expression. CONCLUSION We conclude that the beta-adrenergic pathway can stimulate expression of arrhythmogenic miR-1, contributing to ischaemic arrhythmogenesis, and beta-blockers produce their beneficial effects partially by down-regulating miR-1, which might be a novel strategy for ischaemic cardioprotection.
Journal of Cellular Physiology | 2007
Xiaobin Luo; Jiening Xiao; Huixian Lin; Baoxin Li; Yanjie Lu; Baofeng Yang; Zhiguo Wang
In cardiac cells, KCNQ1 assembles with KCNE1 and forms a channel complex constituting the slow delayed rectifier current IKs. Expression of KCNQ1 and KCNE1 are regionally heterogeneous and changes with pathological states of the heart. The aims of this study were to decipher the molecular mechanisms for transcriptional and post‐transcriptional regulation expression of KCNQ1 and KCNE1 genes and to shed light on the molecular mechanisms for their spatial heterogeneity of distribution. We cloned the 5′‐flanking region and identified the transcription start sites of the KCNQ1 gene. We characterized the core promoters of KCNQ1 and KCNE1 and revealed the stimulating protein (Sp1) as a common transactivator of KCNQ1 and KCNE1 by interacting with the Sp1 cis‐acting elements in the core promoter regions of these genes. We also characterized the 3′ untranslated regions (3′UTRs) of the genes and experimentally established KCNQ1 and KCNE1 as targets for repression by the muscle‐specific microRNAs miR‐133 and miR‐1, respectively. We demonstrated spatial heterogeneity of KCNQ1 and KCNE1 distributions at three axes (interventricular, transmural and apical‐basal) and disparity between mRNA and protein expressions of these genes. We also found characteristic regional differences of expressions of Sp1 and miR‐1/miR‐133 in the heart. Our study unraveled a novel aspect of the cellular function of miRNAs and suggests that the IKs‐encoding genes KCNQ1 and KCNE1 expressions are dynamically balanced by transcription factor regulation and miRNA repression. The heterogeneities of Sp1 and miR‐1/miR‐133 offer an explanation for the well‐recognized regional differences and disparity between mRNA and protein expressions of KCNQ1 and KCNE1. J. Cell. Physiol. 212: 358–367, 2007.
British Journal of Pharmacology | 2009
Hongli Shan; Xuelian Li; Zhenwei Pan; Li Zhang; Benzhi Cai; Yong Zhang; Chaoqian Xu; Wenfeng Chu; Guo-Fen Qiao; Baoxin Li; Yanjie Lu; Baofeng Yang
Background and purpose: Tanshinone IIA is an active component of a traditional Chinese medicine based on Salvia miltiorrhiza, which reduces sudden cardiac death by suppressing ischaemic arrhythmias. However, the mechanisms underlying the anti‐arrhythmic effects remain unclear.
Cellular Physiology and Biochemistry | 2010
Yong Zhang; Li Zhang; Wenfeng Chu; Bing Wang; Jialin Zhang; Mei Zhao; Xuelian Li; Baoxin Li; Yanjie Lu; Baofeng Yang; Hongli Shan
Tanshinone IIA is a fat-soluble pharmacologically active ingredient of Danshen, a well-known traditional Chinese medicine used for cardiovascular diseases such as coronary heart disease. Tanshinone IIA has been confirmed to suppress miR-1 and reduce the arrhythmogenesis after myocardial infarction (MI). However, the modulation mechanism is not clear. Tanshinone IIA was administrated daily for 7 days before ligation of the left anterior descending artery (LAD) and lasted for 3 months after LAD. Neonatal cardiomyocytes were exposed to 2% O2+95% N2 condition for 24 h to simulate ischemia in vivo. Protein expression was examined with Western blot and miR-1 level was quantified by Real-time PCR. Our results showed that tanshinone IIA relieved ischemia-induced injury by improving the cardiac function. This beneficial effect may due to the depression of the elevated miR-1 level in ischemic and hypoxic cardiomyocytes, which subsequently restored its target Cx43 protein. Furthermore, tanshinone IIA could inhibit activated p38 MAPK and heart special transcription factors SRF and MEF2, in ischemic and hypoxic cardiomyocytes. Pretreatment with p38 MAPK inhibitor, SB203580 (10 uM), significantly relieved hypoxia-induced miR-1 increment and restored its downstream target Cx43 protein expression. These data suggest that tanshinone IIA play a role in protection cardiomyocytes from ischemic and hypoxic injury. The effect is based on inhibiting miR-1 expression through p38 MAPK signal pathway. This might provide us a new target to explore the novel strategy for ischemic cardioprotection.
Cardiovascular Research | 2012
Wenfeng Chu; Cui Li; Xuefeng Qu; Dan Zhao; Xuelian Wang; Xiangru Yu; Fulai Cai; Haihai Liang; Yong Zhang; Xin Zhao; Baoxin Li; Guo-Fen Qiao; De-Li Dong; Yanjie Lu; Zhimin Du; Baofeng Yang
AIMS Arsenic trioxide (ATO), an effective therapeutic agent for acute promyelocytic leukaemia, can cause sudden cardiac death due to long QT syndrome (LQTS). The present study was designed to determine whether ATO could induce cardiac fibrosis and explore whether cardiac fibroblasts (CFs) are involved in the development of LQTS by ATO. METHODS AND RESULTS ATO treatment of guinea pigs caused substantial interstitial myocardial fibrosis and LQTS, which was accompanied by an increase in transforming growth factor β1(TGF-β1) secretion and a decrease in ether-à-go-go-related gene (HERG) and inward rectifying potassium channel (I(K1)) subunit Kir2.1 protein levels. ATO promoted collagen production and TGF-β1 expression and secretion in cultured CFs. Whole-cell patch clamp and western blotting showed that treatment with TGF-β1 markedly reduced HERG and I(K1) current densities and downregulated HERG and Kir2.1 protein expression in HEK293 cells stably transfected with the human recombinant HERG channel and in cardiomyocytes (CMs). These changes were completely reversed by treatment with the protein kinase A (PKA) antagonist, H89. CM and CF co-cultures showed that ATO significantly increased TGF-β1 levels in the culture medium, whereas markedly reduced HERG and Kir2.1 protein levels were observed in CMs compared with ATO-treated CMs not co-cultured with CFs. Finally, in vivo administration of LY364947, a pharmacological antagonist of TGF-β signalling, dramatically prevented interstitial fibrosis and LQTS and abolished aberrant expression of TGF-β1, HERG, and Kir2.1 in ATO-treated guinea pigs. CONCLUSION ATO-induced TGF-β1 secretion from CFs aggravates QT prolongation, suggesting that modulation of TGF-β signalling may provide a novel strategy for the treatment of drug-induced LQTS.
Biochemical and Biophysical Research Communications | 2010
Yihua Sun; Yong-quan Li; Shanli Feng; Baoxin Li; Zhenwei Pan; Changqing Xu; Tingting Li; Baofeng Yang
Capacitative calcium entry (CCE) refers to the influx of calcium through plasma membrane channels activated on depletion of endoplasmic sarcoplasmic/reticulum (ER/SR) Ca(2+) stores, which is performed mainly by the transient receptor potential (TRP) channels. TRP channels are expressed in cardiomyocytes. Calcium-sensing receptor (CaR) is also expressed in rat cardiac tissue and plays an important role in mediating cardiomyocyte apoptosis. However, there are no data regarding the link between CaR and TRP channels in rat heart. In this study, in rat neonatal myocytes, by Ca(2+) imaging, we found that the depletion of ER/SR Ca(2+) stores by thapsigargin (TG) elicited a transient rise in cytoplasmic Ca(2+) ([Ca(2+)](i)), followed by sustained increase depending on extracellular Ca(2+). But, TRP channels inhibitor (SKF96365), not L-type channels or the Na(+)/Ca(2+) exchanger inhibitors, inhibited [Ca(2+)](i) relatively high. Then, we found that the stimulation of CaR with its activator gadolinium chloride (GdCl(3)) or by an increased extracellular Ca(2+)([Ca(2+)](o)) increased the concentration of intracelluar Ca(2+), whereas, the sustained elevation of [Ca(2+)](i) was reduced in the presence of SKF96365. Similarly, the duration of [Ca(2+)](i) increase was also shortened in the absence of extracellular Ca(2+). Western blot analysis showed that GdCl(3) increased the expression of TRPC6, which was reversed by SKF96365. Additionally, SKF96365 reduced cardiomyocyte apoptosis induced by GdCl(3). Our results suggested that CCE exhibited in rat neonatal myocytes and CaR activation induced Ca(2+)-permeable cationic channels TRPCs to gate the CCE, for which TRPC6 was one of the most likely candidates. TRPC6 channel was functionally coupled with CaR to enhance the cardiomyocyte apoptosis.
Phytotherapy Research | 2009
Xiao-Feng Wang; Dong-Mei Wu; Baoxin Li; Yanjie Lu; Baofeng Yang
The present study aimed to evaluate the growth‐inhibitory effect of sulforaphane (SFN) and a traditional chemotherapy agent, 5‐fluorouracil (5‐Fu), against the proliferation of salivary gland adenoid cystic carcinoma high metastatic cell line (ACC‐M) and low metastasis cell line (ACC‐2). Furthermore, the expression of nuclear factor kappa B (NF‐κB) which induces resistance to anticancer chemotherapeutic agents was also detected. The combination effect of SFN and 5‐Fu was quantitatively determined using the method of median effect principle and the combination index. The nuclear NF‐κB p65 expression after treatment with the SFN‐5‐Fu combination was also evaluated by western blot analysis. The ACC‐M and ACC‐2 cells exhibited relative resistant to 5‐Fu. Treatment ACCs cells with SFN and 5‐Fu in combination, led to synergistic inhibition on cell growth and a decreased expression in nuclear NF‐κB p65 protein. This synergistic inhibitory effect was more significant in ACC‐M cells, which is associated with the greatly decreased expression of NF‐κB p65 (almost 5‐fold) after the combination treatment. Our results demonstrate synergism between SFN and 5‐Fu at higher doses against the ACC‐M and ACC‐2 cells, which was associated with the decreased expression of nuclear NF‐κB p65 protein. Copyright
Biochemical Pharmacology | 2013
Ying Zhang; Zengxiang Dong; Liyan Jin; Kaiping Zhang; Xin Zhao; Jia Fu; Yan Gong; Mingming Sun; Baofeng Yang; Baoxin Li
The human ether-a-go-go-related gene (hERG) encodes the rapidly activating, delayed rectifier potassium channel (IKr) important for cardiac repolarization. Dysfunction of the hERG channel can cause Long QT Syndrome (LQTS). A wide variety of structurally diverse therapeutic compounds reduce the hERG current by acute direct inhibition of the hERG current or/and selective disruption of hERG protein expression. Arsenic trioxide (As(2)O(3)), which is used to treat acute promyelocytic leukemia, can cause LQTS type 2 (LQT2) by reducing the hERG current through the diversion of hERG trafficking to the cytoplasmic membrane. This cardiotoxicity limits its clinical applications. Our aim was to develop cardioprotective agents to decrease As(2)O(3)-induced cardiotoxicity. We reported that superfusion of hERG-expressing HEK293 (hERG-HEK) cells with matrine (1, 10 μM) increased the hERG current by promoting hERG channel activation. Long-term treatment with 1 μM matrine or oxymatrine increased expression of the hERG protein and rescued the hERG surface expression disrupted by As(2)O(3). In addition, Matrine and oxymatrine significantly shortened action potential duration prolonged by As(2)O(3) in guinea pig ventricular myocytes. These results were ascribed to the up-regulation of hERG at both mRNA and protein levels via an increase in the expression of transcription factor Sp1, an established transactivator of the hERG gene. Therefore, matrine and oxymatrine may have the potential to cure LQT2 as a potassium channel activator by promoting hERG channel activation and increasing hERG channel expression.
Cellular Physiology and Biochemistry | 2012
Zengxiang Dong; Xin Zhao; Dong-Fang Gu; Yuan-Qi Shi; Jia Zhang; Xing-Xia Hu; Mei-Qin Hu; Baofeng Yang; Baoxin Li
Liensinine and neferine, a kind of isoquinoline alkaloid, can antagonize the ventricular arrhythmias. The human ether-a-go-go-related gene (hERG) is involved in repolarization of cardiac action potential. We investigated the effects of liensinine and neferine on the biophysical properties of hERG channel and the underlying structure–activity relationships. The effects of liensinine and neferine were examined on the hERG channels in the stable transfected HEK293 cells using a whole-cell patch clamp technique, western blot analysis and immunofluorescence experiment. The pharmacokinetics and tissue distribution determination of liensinine and neferine in rats were determined by a validated RP-HPLC method. Liensinine and neferine induced decrease of current amplitude in dose-dependent. Liensinine reduced hERG tail current from 70.3±6.3 pA/pF in control group to 56.7±2.8 pA/pF in the 1 µM group, 53.0±2.3 pA/pF (3 µM) and 17.8±0.7 pA/pF (30 µM); the corresponding current densities of neferine-treated cells were 41.9±3.1 pA/pF, 32.3±3.1 pA/pF and 16.2±0.6 pA/pF, respectively. Neferine had binding affinity for the open and inactivated state of hERG channel, liensinine only bound to the open state. The inhibitory effects of liensinine and neferine on hERG current were attenuated in the F656V or Y652A mutant channels. Neferine distributed more quickly than liensinine in rats, which was found to be in higher concentration than liensinine. Both liensinine and neferine had no effect on the generation and expression of hERG channels. In conclusion, neferine is a more potent blocker of hERG channels than liensinine at low concentration (<10 µM), which may be due to higher hydrophobic nature of neferine compared with liensinine. Neferine may be safety even for long-term treatment as an antiarrhythmic drug.