Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Baoyou Shi is active.

Publication


Featured researches published by Baoyou Shi.


Environmental Science & Technology | 2011

Effect of dispersion on adsorption of atrazine by aqueous suspensions of fullerenes.

Ke Gai; Baoyou Shi; Xiaomin Yan; Dongsheng Wang

With the widespread application of fullerenes, it is critical to assess their environmental behaviors and their impacts on the transport and bioavailability of organic contaminants. The effects of fullerene particle size, chemistry of the solution, and natural organic matter on the adsorption of atrazine by aqueous dispersions of fullerenes (C(60)) were investigated in this work. The results showed that the Polanyi-Manes model could fit the adsorption isotherms well. Smaller sizes of fullerene particles led to increased available sites and, consequently, enhanced the adsorption of atrazine on C(60). However, intensely dispersed C(60) systems might not possess suitably high adsorptive capacities due to surface chemistry change. Adsorption of atrazine by aqueous dispersions of C(60) increased with a decrease in the pH of the solution. Introduction of humic acid significantly reduced the size of the C(60) particles, and resulted in the increase of the adsorption amount. Fullerene materials, once released into the aquatic environment, are inclined to form aqueous suspensions with different degrees of dispersion, which would greatly affect the transport and fate of organic contaminants.


Science of The Total Environment | 2014

Bacterial community of biofilms developed under different water supply conditions in a distribution system

Huifang Sun; Baoyou Shi; Yaohui Bai; Dongsheng Wang

In order to understand the bacterial community characteristics of biofilms developed under different finished water supply histories in drinking water distribution systems (DWDS), biofilm samples on different type of iron corrosion scales in a real DWDS were collected and systematically investigated using 454 pyrosequencing of 16S rRNA gene. The richness and diversity estimators showed that biofilms formed in DWDS transporting finished groundwater (GW) had the lowest level of bacterial diversity. From phylum to genus level, the dominant bacterial groups found in the biofilms under finished surface water (SW) and GW conditions were distinct. Proteobacteria was the dominant group in all biofilm samples (in the range of 40%-97%), but was relatively higher in biofilms with GW. The relative abundance of Firmicutes in biofilms with SW (28%-35%) was significantly higher (p<0.01) than that in biofilms with GW (0.5%-2.88%). Statistical analysis (Spearmans rank) revealed that alkalinity and chemical oxygen demand (CODMn) positively correlated with the relative abundance of Proteobacteria and Firmicutes, respectively. The abundance of sequences affiliated to iron-reducing bacteria (mainly Bacillus) and iron-oxidizing bacteria (mainly Acidovorax) were relatively higher in biofilms with SW, which might contribute to the formation of much thicker or tubercle-formed corrosion scales under SW supply condition. Several potential opportunistic pathogens, such as Burkholderia fungorum, Mycobacterium neoaurum, Mycobacterium frederiksbergense were detected in the biofilms.


Journal of Environmental Sciences-china | 2010

Adsorption of atrazine by natural organic matter and surfactant dispersed carbon nanotubes.

Baoyou Shi; Xiaoyan Zhuang; Xiaomin Yan; Jiajuan Lu; Hongxiao Tang

The aggregation and dispersion behaviors of carbon nanotubes (CNTs) can regulate the environmental spread and fate of CNTs, as well as the organic pollutants adsorbed onto them. In this study, multi-walled carbon nanotubes (MWNTs) and single-walled carbon nanotubes (SWNTs) were surface modified with humic acids from different sources and with surfactants of different ionic types. The dispersion stability of surface modified CNTs was observed by UV-Vis spectrophotometry. The effect of humic acid and surfactant dispersion on the adsorption of atrazine by CNTs was investigated by batch equilibrium experiments. Both humic acid and surfactant could effectively disperse MWNTs, but not SWNTs, into stable suspensions under the studied conditions. Surface modified CNTs had a greatly reduced capacity for adsorption of atrazine. The inhibitory effect of peat humic acid was relatively stronger than that of soil humic acid, but the two surfactants had a similar inhibitory effect on atrazine adsorption by the two CNT types. Increases in surfactant concentration resulted in rapid decreases in the adsorption of atrazine by CNTs when the surfactant concentration was less than 0.5 critical micelle concentration.


Environmental Science: Processes & Impacts | 2014

Formation and release behavior of iron corrosion products under the influence of bacterial communities in a simulated water distribution system

Huifang Sun; Baoyou Shi; Darren A. Lytle; Yaohui Bai; Dongsheng Wang

To understand the formation and release behavior of iron corrosion products in a drinking water distribution system, annular reactors (ARs) were used to investigate the development processes of corrosion products and biofilm community as well as the concomitant iron release behavior. Results showed that the formation and transformation of corrosion products and bacterial community are closely related to each other. The presence of sulfate-reducing bacteria (SRB, e.g. Desulfovibrio and Desulfotomaculum), sulfur-oxidizing bacteria (SOB, e.g. Sulfuricella), and iron-oxidizing bacteria (IOB, e.g. Acidovorax, Gallionella, Leptothrix, and Sphaerotilus) in biofilms could speed up iron corrosion; however, iron-reducing bacteria (IRB, e.g. Bacillus, Clostridium, and Pseudomonas) could inhibit iron corrosion and iron release. Corrosion scales on iron coupons could develop into a two-layered structure (top layer and inner layer) with time. The relatively stable constituents such as goethite (α-FeOOH) and magnetite (Fe3O4) mainly existed in the top layers, while green rust (Fe6(OH)12CO3) mainly existed in the inner layers. The IOB (especially Acidovorax) contributed to the formation of α-FeOOH, while IRB and the anaerobic conditions could facilitate the formation of Fe3O4. Compared with the AR test without biofilms, the iron corrosion rate with biofilms was relatively higher (p < 0.05) during the whole experimental period, but the iron release with biofilms was obviously lower both at the initial stage and after 3 months. Biofilm and corrosion scale samples formed under different water supply conditions in an actual drinking water distribution system verified the relationships between the bacterial community and corrosion products.


Journal of Environmental Sciences-china | 2009

Fractal analysis of polyferric chloride-humic acid (PFC-HA) flocs in different topological spaces.

Yili Wang; Jia Lu; Baiyu Du; Baoyou Shi; Dongsheng Wang

The fractal dimensions in different topological spaces of polyferric chloride-humic acid (PFC-HA) flocs, formed in flocculating different kinds of humic acids (HA) water at different initial pH (9.0, 7.0, 5.0) and PFC dosages, were calculated by effective density-maximum diameter, image analysis, and N2 absorption-desorption methods, respectively. The mass fractal dimensions (Df) of PFC-HA flocs were calculated by bi-logarithm relation of effective density with maximum diameter and Logan empirical equation. The Df value was more than 2.0 at initial pH of 7.0, which was 11% and 13% higher than those at pH 9.0 and 5.0, respectively, indicating the most compact flocs formed in flocculated HA water at initial pH of 7.0. The image analysis for those flocs indicates that after flocculating the HA water at initial pH greater than 7.0 with PFC flocculant, the fractal dimensions of D2 (logA vs. logdL) and D3 (logVsphere VS. logdL) of PFC-HA flocs decreased with the increase of PFC dosages, and PFC-HA flocs showed a gradually looser structure. At the optimum dosage of PFC, the D2 (logA vs. logdL) values of the flocs show 14%-43% difference with their corresponding Df, and they even had different tendency with the change of initial pH values. However, the D2 values of the flocs formed at three different initial pH in HA solution had a same tendency with the corresponding Dr. Based on fractal Frenkel-Halsey-Hill (FHH) adsorption and desorption equations, the pore surface fractal dimensions (Ds) for dried powders of PFC-HA flocs formed in HA water with initial pH 9.0 and 7.0 were all close to 2.9421, and the Ds values of flocs formed at initial pH 5.0 were less than 2.3746. It indicated that the pore surface fractal dimensions of PFC-HA flocs dried powder mainly show the irregularity from the mesopore-size distribution and marcopore-size distribution.


Journal of Environmental Sciences-china | 2007

Transformations of particles, metal elements and natural organic matter in different water treatment processes

Mingquan Yan; Dongsheng Wang; Baoyou Shi; Qunshan Wei; Qu Jiuhui; Hongxiao Tang

Characterizing natural organic matter (NOM), particles and elements in different water treatment processes can give a useful information to optimize water treatment operations. In this article, transformations of particles, metal elements and NOM in a pilot-scale water treatment plant were investigated by laser light granularity system, particle counter, glass-fiber membrane filtration, inductively coupled plasma-optical emission spectroscopy, ultra filtration and resin absorbents fractionation. The results showed that particles, NOM and trihalomethane formation precursors were removed synergistically by sequential treatment of different processes. Pre-ozonation markedly changed the polarity and molecular weight of NOM, and it could be conducive to the following coagulation process through destabilizing particles and colloids; mid-ozonation enhanced the subsequent granular activated carbon (GAC) filtration process by decreasing molecular weight of organic matters. Coagulation-flotation and GAC were more efficient in removing fixed suspended solids and larger particles; while sand-filtration was more efficient in removing volatile suspended solids and smaller particles. Flotation performed better than sedimentation in terms of particle and NOM removal. The type of coagulant could greatly affect the performance of coagulation-flotation. Pre-hydrolyzed composite coagulant (HPAC) was superior to FeCl3 concerning the removals of hydrophobic dissolved organic carbon and volatile suspended solids. The leakages of flocs from sand-filtration and microorganisms from GAC should be mitigated to ensure the reliability of the whole treatment system.


Journal of Environmental Sciences-china | 2016

Deposition behavior of residual aluminum in drinking water distribution system: Effect of aluminum speciation

Yue Zhang; Baoyou Shi; Yuanyuan Zhao; Mingquan Yan; Darren A. Lytle; Dongsheng Wang

Finished drinking water usually contains some residual aluminum. The deposition of residual aluminum in distribution systems and potential release back to the drinking water could significantly influence the water quality at consumer taps. A preliminary analysis of aluminum content in cast iron pipe corrosion scales and loose deposits demonstrated that aluminum deposition on distribution pipe surfaces could be excessive for water treated by aluminum coagulants including polyaluminum chloride (PACl). In this work, the deposition features of different aluminum species in PACl were investigated by simulated coil-pipe test, batch reactor test and quartz crystal microbalance with dissipation monitoring. The deposition amount of non-polymeric aluminum species was the least, and its deposition layer was soft and hydrated, which indicated the possible formation of amorphous Al(OH)3. Al13 had the highest deposition tendency, and the deposition layer was rigid and much less hydrated, which indicated that the deposited aluminum might possess regular structure and self-aggregation of Al13 could be the main deposition mechanism. While for Al30, its deposition was relatively slower and deposited aluminum amount was relatively less compared with Al13. However, the total deposited mass of Al30 was much higher than that of Al13, which was attributed to the deposition of particulate aluminum matters with much higher hydration state. Compared with stationary condition, stirring could significantly enhance the deposition process, while the effect of pH on deposition was relatively weak in the near neutral range of 6.7 to 8.7.


Environmental Science: Water Research & Technology | 2018

Biofilm bacterial community transition under water supply quality changes in drinking water distribution systems

Xu Ma; Guangming Zhang; Guiwei Li; Yunjie Wan; Huifang Sun; Haibo Wang; Baoyou Shi

In this work, the bacterial community transition characteristics of pipe wall biofilms and the iron release behaviors under water supply quality changes were investigated through pilot-scale experiments. Test pipelines that were harvested from actual drinking water distribution systems (DWDS) in a northern city in China were transported to the water source site of Chinas South-to-North Water Diversion Project for supply water switch experiments. Some main water quality parameters closely related to iron release in DWDS, such as SO42−, Cl−, HCO3−, pH and Ca2+ hardness, were adjusted to observe their effects on the biofilm bacterial community. Microbial samples collected from pipe biofilms were analyzed using Illumina MiSeq sequencing of the 16S rRNA gene. The results showed that the bacterial community composition and diversity of pipe biofilms with different water supply histories were significantly different but tended to be the same after one month of switching to new water. The level of bacterial richness and diversity increased after increasing the SO42−, Cl− and HCO3− of the supply water but decreased after increasing the pH of the water. The relative abundance of corrosive bacteria did not change greatly with the increase of these water quality parameters. The 16S predicted gene functions demonstrated that the relative abundances of metabolic enzymes involved in iron and sulfur redox were rather low (<0.1%) and had no obvious difference in the different experimental phases. It was shown that chemical interactions other than microbial processes played the main role in iron release during the water supply transition period. Opportunistic pathogen-containing genera such as Burkholderia, Ralstonia, Mycobacterium, Acinetobacter, and Pseudomonas were detected; this detection implied that more effective disinfection measures should be considered to ensure the microbial safety of drinking water.


Journal of Hazardous Materials | 2019

Simultaneous cationic Cu (II)‒anionic Sb (III) removal by NH2-Fe3O4-NTA core-shell magnetic nanoparticle sorbents synthesized via a facile one-pot approach

Haotian Hao; Guifeng Liu; Yili Wang; Baoyou Shi; Kun Han; Yuan Zhuang; Yan Kong

In this study, a regenerable magnetic core-shell nanoparticles NH2-Fe3O4-NTA which include 3-aminopropyltriethoxysilane (APTES) and nitrilotriacetic acid (NTA) crosslinked to Fe3O4 was developed by one-pot method for simultaneous removal of cationic and anionic metals. Another nanocomposite NH2-Fe3O4-NTAII was prepared by multi-step method for comparison. NH2-Fe3O4-NTA had positive zeta potential values of 35.1-0.8 mV at pH 1.8-11.0, with the saturation magnetization and surface area up to 40.56 emu/g and 56.94 m2/g, respectively. The maximum sorption capacities of NH2-Fe3O4-NTA for cationic Cu (II) and anionic Sb (III) were 55.56 and 51.07 mg/L, respectively, which were superior to that of NH2-Fe3O4-NTAII. Based on screening in terms of characterization and metal sorption capacity, NH2-Fe3O4-NTA with a feasible synthesis scheme was chosen for further evaluation. The Cu (II) removal by NH2-Fe3O4-NTA was favored with increasing pH, while the Sb (III) removal preferred low pH (2-3). Simultaneous sorption of Cu (II) and Sb (III) exhibited same removal performance with the sole sorption under high dosage (>1 g/L). In real wastewater applications of NH2-Fe3O4-NTA, multiple metals in actual wastewater could be removed to well below the regulation levels. Nonspecific electrostatic interactions, inner-sphere complexation, ligand exchange, chelation and coordination complexation were responsible for Cu (II) and Sb (III) removal.


Journal of Environmental Sciences-china | 2018

Dye removal by eco-friendly physically cross-linked double network polymer hydrogel beads and their functionalized composites

Yan Kong; Yuan Zhuang; Zhiyong Han; Jianwei Yu; Baoyou Shi; Kun Han; Haotian Hao

Hydrogels have attracted large attention in wastewater treatment fields due to their low-cost and good interaction with pollutants, among which novel double network hydrogel is an outstanding class. To expand the application of double network hydrogel in water treatment, in this study, eco-friendly physically cross-linked double network polymer hydrogel beads (DAP) are prepared and studied in depth on the mechanism of Methylene Blue (MB) adsorption; and then the polymer hydrogels are further functionalized by inorganic materials. MB adsorption on DAP favors alkaline condition which is due to the increase of electrostatic attraction and adsorption site, and it reaches equilibrium within 10 hr, which is faster than that of the single network hydrogel beads (SAP). Through thermodynamics study, the process shows to be an exothermic and spontaneous process. The adsorption isotherms are well fitted by Langmuir model, with a maximum monolayer adsorption capacity of 1437.48 mg/g, which is larger than SAP (1255.75 mg/g). After being functionalized with common inorganic materials including activated carbon, Fe3O4 and graphene oxide (GO), the composites show to have larger pore sizes and have obvious increases in adsorption capacity especially the one contains GO. Then the composites contains Fe3O4 are used as heterogeneous Fenton catalyst which shows to have excellent performance in MB degradation. The results indicate the potential of polymer double network to be functionalized in environmental areas.

Collaboration


Dive into the Baoyou Shi's collaboration.

Top Co-Authors

Avatar

Dongsheng Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hongxiao Tang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yili Wang

Beijing Forestry University

View shared research outputs
Top Co-Authors

Avatar

Chenghong Feng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Fan Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Huifang Sun

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qunshan Wei

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaomin Yan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jiajuan Lu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yan Kong

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge