Baoyuan Guo
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Baoyuan Guo.
Journal of Separation Science | 2008
Bao-Lin Chu; Baoyuan Guo; Zhihua Wang; Jin-Ming Lin
A comparison between chiral cyclodextrin-modified microemulsion electrokinetic chromatography (CD-MEEKC) and cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC) for the enantiomeric separation of esbiothrin was carried out. For both methods, the separation conditions were optimized by varying CD types and concentration, running buffer pH and compositions, organic modifiers, and temperature. The optimal CD-MEEKC conditions were 0.8% n-heptane, 2.3% SDS, 6.6% n-butanol, 90.3% 10 mM sodium tetraborate containing 3% (w/v, the ratio of CD mass to microemulsion volume) methyl-beta-cyclodextrin, pH 10, 25 degrees C. The optimized CD-MEKC conditions were 3.3% SDS, 96.7% 10 mM sodium tetraborate containing 5% (w/v) beta-CD, pH 10, 25 degrees C. The difference in physicochemical properties of the buffer and CDs resulted in different optimal CD type. The competitive distribution between the microemulsion (or micelle) and chiral CD contributed to the chiral separation. Both methods provided excellent separation (R(s) approximately 3) with similar migration time (ca. 15 min). CD-MEEKC provided higher separation efficiencies (>300000) than CD-MEKC (>200000). The LODs for CD-MEEKC and CD-MEKC were 4.7 microg/mL and 3.2 microg/mL, respectively. The RSDs of migration time and peak area for CD-MEEKC were slightly higher than for CD-MEKC. Both the demonstrated CD-MEEKC and CD-MEKC methods provided high efficiencies, low LODs, and reproducible enantioseparations of esbiothrin.
Journal of Agricultural and Food Chemistry | 2013
Yongxin Gao; Jinhui Chen; Huili Wang; Chen Liu; Xiaotian Lv; Jianzhong Li; Baoyuan Guo
The enantiomerization and enatioselecive bioaccumulation of benalaxyl by dietary exposure to Tenebrio molitor larvae under laboratory conditions were studied by HPLC-MS/MS. Exposure of enantiopure R-benalaxyl and S-benalaxyl in T. molitor larvae revealed significant enantiomerization with formation of the R enantiomers from the S enantiomers, and vice versa. Enantiomerization was not observed in wheat bran during the period of 21 days. For the bioaccumulation experiment, the enantiomer fraction in T. molitor larvae was maintained approximately at 0.6, whereas the enantiomer fraction in wheat bran was maintained at 0.5; in other words, the bioaccumulation of benalaxyl was enantioselective in T. molitor larvae. Mathematical models for a process of uptake, degradation, and enantiomerization were developed, and the rates of uptake, degradation, and enantiomerization of R-benealaxyl and S-benealaxyl were estimated, respectively. The results were that the rate of uptake of R-benalaxyl (kRa = 0.052 h(-1)) was slightly lower than that of S-benalaxyl (kSa = 0.061 h(-1)) from wheat bran; the rate of degradation of R-benalaxyl (kRd = 0.285 h(-1)) was higher than that of S-benalaxyl (kSd = 0.114 h(-1)); and the rate of enantiomerization of R-benalaxyl (kRS = 0.126 h(-1)) was higher than that of S-benalaxyl (kSR = 0.116 h(-1)). It was suggested that enantioselectivtiy was caused not only by actual degradation and metabolism but also by enantiomerization, which was an important process in the environmental fate and behavior of chiral pesticides.
Journal of Separation Science | 2010
Baoyuan Guo; Songxue Wang; Baozhong Ren; Xin Li; Fei Qin; Jianzhong Li
Molecularly imprinted polymers (MIPs) for citrinin (Cit) with 1-hydroxy-2-naphthoic acid (HNA) as mimic template were prepared and the molecularly imprinted SPE method was developed for the detection of Cit in rice with HPLC. The adsorption properties of HNA and Cit on the MIPs and nonimprinted polymers were investigated. It proved that MIPs showed higher selectivity adsorption to HNA and Cit than nonimprinted polymers were. The recoveries of Cit in rice were in the range of 86.7-97.7%. The spiked rice samples and five rice samples in Beijing market were detected using molecularly imprinted SPE method and satisfied results were obtained as discussed in this article.
Journal of Chromatography A | 2009
Weili Wei; Baoyuan Guo; Jin-Ming Lin
In the present study, a capillary electrophoresis method using high concentration of amylose solutions as separation medium has been developed with the aid of dimethyl sulfoxide (DMSO) as co-solvent. The best buffer conditions for primaquine, trihexyphenidyl (THP), sulconazole and cetirizine enantiomers were optimized as 20mM sodium phosphate buffer with DMSO/water (40/60, v/v) as solvent at a pH of 3.0, containing 10% (w/v) amylose. Partial-filling and semi-permanent coating techniques were used considering the influences of DMSO on UV detection. High chiral resolution for THP enantiomers was obtained showing good chiral separation capacity of this method. The method showed good linearity (R(2) > 0.998) over the concentration range of 0.50 and 2.00 mg L(-1) for all the enantiomers. The detection limits for the tested enantiomers were in the range from 0.05 to 0.12 mg L(-1). The linear calibration models were proven to be adequate for the experimental data by lack-of-fit test. The intra-assay precision, inter-day precision and accuracy were all evaluated to be acceptable. Separation and determination of THP enantiomers in rabbit blood were also carried out.
Electrophoresis | 2009
Weili Wei; Baoyuan Guo; Jin-Ming Lin
The present study discovered that helical structures of amylose were not always responsible for its chiral recognition abilities in CE. Several enantiomers with different structures were selected as models. Based on ultraviolet–visible spectroscopy and 13C NMR measurements, it was found that helical structures were gradually destroyed by temperature elevation and almost entirely transformed to extended ahelical structures above 60°C. Then, CE and 1H NMR chiral recognitions were investigated at different temperatures; chiral selectivity of the enantiomers varied in two different ways. Summarily, helical structures were necessary only for chiral separations of the enantiomers with small (<0.78 nm) and flexible molecular structures. However, for the gauche enantiomers (>0.78 nm) with high steric hindrances over their chiral centers, ahelical structures alone can realize chiral recognitions. By using iodine as a helix including competitor, it was further proved that helical structures functioned through the inclusive complexations only in the chiral separations of small enantiomers and had no effect for the others. The underlying mechanisms of the functions of helical and ahelical structures in molecular level were discussed as well.
Pesticide Biochemistry and Physiology | 2014
Yinghuan Wang; Baoyuan Guo; Yongxin Gao; Peng Xu; Yanfeng Zhang; Jianzhong Li; Huili Wang
Benalaxyl as a xylem-systemic fungicide is usually direct sprayed on the soil surface, which is potential harm to the animals lived in the soil. However, the stereoselectivity of benalaxyl in reptiles have rarely been studied. In this study, Chinese lizards (Eremias argus) were firstly used to evaluate the stereoselectivity in biodegradation and toxicity of racemate and individual enantiomers of benalaxyl. A method for determining residues of the two enantiomers of benalaxyl in lizard blood and liver by high-performance liquid chromatography coupled with triple quadrupole mass spectrometry (HPLC-MS/MS) was developed. The degradation followed pseudo first-order kinetics and the degradation of the (S)-(+)-benalaxyl was faster than its antipode in blood and liver (Half-time t1/2 of (R)-(-)-benalaxyl and (S)-(+)-benalaxyl were 5.08 h and 3.75 h in blood, 6.21 h and 4.45 h in liver, separately). Moreover, antioxidant defenses consisting of activities of superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST) and lipid peroxide malondialdehyde (MDA) were determined in 24h acute exposure. Enantioselectivity of acute toxicity depended on the concentration and form of benalaxyl. In addition, cellular degeneration, decrease of cell number, clustering phenomena of cell nuclei and preliminary liver fibrosis were observed in pathological detection at the termination of 21-d subchronic exposure (20 mg/kg(-bw) of racemate and individual enantiomers of benalaxyl). The enantiomer fractions (EFs) in racemate and individual enantiomer groups were approached both in blood and liver caused by the chiral conversion. The chiral conversion from (R)-(-)-benalaxyl to (S)-(+)-benalaxyl and (S)-(+)-benalaxyl to (R)-(-)-benalaxyl were the primary cause for no remarkable differences in toxicity between the enantiomers of benalaxyl.
Ecotoxicology and Environmental Safety | 2014
Huili Wang; Jinhui Chen; Baoyuan Guo; Jianzhong Li
Degradation and enantioselective bioaccumulation of diniconazole in earthworms (Eiseniafetida) in artificial soil was investigated using liquid chromatography-tandem mass spectrometry (LC-MS/MS) method under laboratory condition. Three exposure concentrations (1 mg/kg, 10 mg/kg and 25 mg/kg) of diniconazole in soil (dry weight) to earthworms were used. The uptake kinetics fitted the first-order kinetics well. The bioaccumulation factors (BAF) of R, S isomers were 6.6046 and 8.5115 in 25 mg/kg dose exposure, 2.6409 and 2.9835 in 10mg/kg dose exposure, 1.7784 and 2.0437 in 1 mg/kg dose exposure, respectively. Bioaccumulation of diniconazole in earthworm tissues was enantioselective with a preferential accumulation of S-diniconazole and the enantiomer fractions were about 0.45-0.50 in all three level dose exposures. In addition, it was obvious that both R-diniconazole and S-diniconazole had bioaccumulation effect in earthworm. Diniconazole was metabolized to 1,2,4-triazole, (E)-3-(1H-1,2,4-triazol-1-yl) acrylaldehyde, (E, S)-4-(2, 4-dichlorophenyl)-2, 2-dimethyl-5-(1H-1,2,4-triazol-1-yl)pent-4-ene-1,3-diol, and (E)-4-(2, 4-dichlorophenyl)-3-hydroxy-2,2-dimethyl-5-(1H-1,2,4-triazol-1-yl) pent-4-enoic acid in earthworms; the metabolites of 1,2,4-triazole and (E)-3-(1H-1,2,4-triazol-1-yl)acrylaldehyde could be detected in soil as well.
Chirality | 2014
Yongxin Gao; Huili Wang; Fang Qin; Peng Xu; Xiaotian Lv; Jianzhong Li; Baoyuan Guo
The enantiomerization and enantioselective bioaccumulation of metalaxyl by a single dose of exposure to Tenebrio molitor larvae under laboratory condition were studied by high-performance liquid chromatography tandem mass spectroscopy (HPLC-MS/MS) based on a ChiralcelOD-3R [cellulosetris-tris-(3, 5-dichlorophenyl-carbamate)] column. Exposure of enantiopure R-metalaxyl and S-metalaxyl in Tenebrio molitor larvae exhibited significant enantiomerization, with formation of the R enantiomers from the S enantiomers, and vice versa, which might be attributed to the chiral pesticide catalyzed by a certain enzyme in Tenebrio molitor larvae. Enantiomerization was not observed in wheat bran during the period of 21 d. In addition, bioaccumulation of rac-metalaxyl in Tenebrio molitor larvae was enantioselective with a preferential accumulation of S-metalaxyl. These results showed that enantioselectivity was caused not only by actual degradation and metabolism but also by enantiomerization, which was an important process in the environmental fate and behavior of metalaxyl enantiomers.
Journal of Environmental Sciences-china | 2012
Dingyi Yu; Jianzhong Li; Yanfeng Zhang; Huili Wang; Baoyuan Guo; Lin Zheng
Methods of extraction and determination of tebuconazole enantiomers in earthworm (Eisenia fetida) were developed by capillary electrophoresis (CE) and high performance liquid chromatography (HPLC). Both CE and HPLC have excellent resolution and recovery. The linearity ranges were 2.9-102.4 mg/kg and 3.0-99.6 mg/kg for (+)-R-tebuconazole and (-)-S-tebuconazole respectively in CE, and from 0.56 to 1000 mg/kg for both enantiomers in HPLC. Enantioselective bioaccumulation in earthworms from soil was investigated under laboratory condition at concentrations of 10 and 50 mg/kg dw in soil. The uptake kinetics of (+)-R-tebuconazole fitted the first-order kinetics well with r2 0.97 and 0.94 under 10 and 50 mg/kg dw exposure condition, respectively, while (-)-S-tebuconazole with r2 0.75 and 0.22 did not show the same. Bioaccumulation of tebuconazole in earthworm tissues was enantioselective with a preferential accumulation of (+)-R-tebuconazole. The (+)-R-tebuconazole might also have biomagnifying effect potential in earthworm food chain with biota-sediment accumulation factor (BSAF) of 1.64 kg OC/kg lip in 10 mg/kg dw exposure group and 2.61 kg OC/kg lip in 50 mg/kg dw exposure group from soil to earthworm after 36 days. Although (-)-S-tebuconazole shares the same physicochemical properties with (+)-R-tebuconazole, it did not biomagnify. BSAFs of (-)-S-tebuconazole were 0.50 kg OC/kg lip (10 mg/kg dw tebuconazole exposure) and 0.28 kg OC/kg lip (50 mg/kg dw tebuconazole exposure) after 36 days, which was possibly owing to biotransformation or metabolism in earthworm tissues.
Chirality | 2013
Chen Liu; Xiao Lv; Wen Xue Zhu; Hao Yang Qu; Yong Xin Gao; Baoyuan Guo; Huili Wang
The enantioselective bioaccumulation of diniconazole in Tenebrio molitor Linne larva was investigated with liquid chromatography tandem mass spectrometry based on the ChiralcelOD-3R[cellulose tri-(3,5-dimethylphenyl carbamate)] column. In this study we documented the effects of dietary supplementation with wheat bran contaminated by racemic diniconazole at two dose levels of 20 mg kg(-1) and 2 mg kg(-1) (dry weight) in Tenebrio molitor. The results showed that both doses of diniconazole were taken up by Tenebrio molitor rapidly in the first few days, the concentrations of R-enantiomer and S-enantiomer at high doses reached the highest level of 0.55 mg kg(-1) and 0.48 mg kg(-1) , respectively, on the 1(st) d, and the concentrations of them obtained a maxima of 0.129 mg kg(-1) and 0.128 mg kg(-1) at low dose, respectively, on the 3(rd) d, which means that the concentration of diniconazole was proportional to the time of achieving the highest accumulated level. It afterwards attained equilibrium after a sharp decline at both 20 mg kg(-1) and 2 mg kg(-1) of diniconazole. The determination results from the feces of Tenebrio molitor demonstrated that the extraction recovery (ER) values of the high dose group were higher than that of the low dose group and the values were all above 1; therefore, it could be inferred that enantiomerization existed in Tenebrio molitor. Additionally, the biota accumulation factor was used to evaluate the bioaccumulation of diniconazole enantiomers, showing that the bioaccumulation of diniconazole in Tenebrio molitor was enantioselective with preferential accumulation of S-enantiomer.