Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Baoyun Xia is active.

Publication


Featured researches published by Baoyun Xia.


Journal of Experimental Medicine | 2007

Increased susceptibility to colitis and colorectal tumors in mice lacking core 3–derived O-glycans

Guangyu An; Bo Wei; Baoyun Xia; J. Michael McDaniel; Tongzhong Ju; Richard D. Cummings; Jonathan Braun; Lijun Xia

Altered intestinal O-glycan expression has been observed in patients with ulcerative colitis and colorectal cancer, but the role of this alteration in the etiology of these diseases is unknown. O-glycans in mucin core proteins are the predominant components of the intestinal mucus, which comprises part of the intestinal mucosal barrier. Core 3–derived O-glycans, which are one of the major types of O-glycans, are primarily expressed in the colon. To investigate the biological function of core 3–derived O-glycans, we engineered mice lacking core 3 β1,3-N-acetylglucosaminyltransferase (C3GnT), an enzyme predicted to be important in the synthesis of core 3–derived O-glycans. Disruption of the C3GnT gene eliminated core 3–derived O-glycans. C3GnT-deficient mice displayed a discrete, colon-specific reduction in Muc2 protein and increased permeability of the intestinal barrier. Moreover, these mice were highly susceptible to experimental triggers of colitis and colorectal adenocarcinoma. These data reveal a requirement for core 3–derived O-glycans in resistance to colonic disease.


Journal of Clinical Investigation | 2008

Endothelial cell O-glycan deficiency causes blood/lymphatic misconnections and consequent fatty liver disease in mice

Jianxin Fu; Holger Gerhardt; J. Michael McDaniel; Baoyun Xia; Xiaowei Liu; Lacramioara Ivanciu; Annelii Ny; Karlien Hermans; Robert Silasi-Mansat; Samuel McGee; Emma Nye; Tongzhong Ju; Maria I. Ramirez; Peter Carmeliet; Richard D. Cummings; Florea Lupu; Lijun Xia

Mucin-type O-glycans (O-glycans) are highly expressed in vascular ECs. However, it is not known whether they are important for vascular development. To investigate the roles of EC O-glycans, we generated mice lacking T-synthase, a glycosyltransferase encoded by the gene C1galt1 that is critical for the biosynthesis of core 1-derived O-glycans, in ECs and hematopoietic cells (termed here EHC T-syn(-/-) mice). EHC T-syn(-/-) mice exhibited embryonic and neonatal lethality associated with disorganized and blood-filled lymphatic vessels. Bone marrow transplantation and EC C1galt1 transgene rescue demonstrated that lymphangiogenesis specifically requires EC O-glycans, and intestinal lymphatic microvessels in EHC T-syn(-/-) mice expressed a mosaic of blood and lymphatic EC markers. The level of O-glycoprotein podoplanin was significantly reduced in EHC T-syn(-/-) lymphatics, and podoplanin-deficient mice developed blood-filled lymphatics resembling EHC T-syn(-/-) defects. In addition, postnatal inactivation of C1galt1 caused blood/lymphatic vessel misconnections that were similar to the vascular defects in the EHC T-syn(-/-) mice. One consequence of eliminating T-synthase in ECs and hematopoietic cells was that the EHC T-syn(-/-) pups developed fatty liver disease, because of direct chylomicron deposition via misconnected portal vein and intestinal lymphatic systems. Our studies therefore demonstrate that EC O-glycans control the separation of blood and lymphatic vessels during embryonic and postnatal development, in part by regulating podoplanin expression.


Cancer Research | 2008

Human Tumor Antigens Tn and Sialyl Tn Arise from Mutations in Cosmc

Tongzhong Ju; Grainger S. Lanneau; Tripti Gautam; Yingchun Wang; Baoyun Xia; Sean R. Stowell; Margaret T. Willard; Wenyi Wang; Jonathan Y. Xia; Rosemary E. Zuna; Zoltan Laszik; Doris M. Benbrook; Marie H. Hanigan; Richard D. Cummings

Neoplastic lesions typically express specific carbohydrate antigens on glycolipids, mucins, and other glycoproteins. Such antigens are often under epigenetic control and are subject to reversion and loss upon therapeutic selective pressure. We report here that two of the most common tumor-associated carbohydrate antigens, Tn and sialyl Tn (STn), result from somatic mutations in the gene Cosmc that encodes a molecular chaperone required for formation of the active T-synthase. Diverse neoplastic lesions, including colon cancer and melanoma-derived cells lines, expressed both Tn and STn antigen due to loss-of-function mutations in Cosmc. In addition, two human cervical cancer specimens that showed expression of the Tn/STn antigens were also found to have mutations in Cosmc and loss of heterozygosity for the cross-linked Cosmc locus. This is the first example of somatic mutations in multiple types of cancers that cause global alterations in cell surface carbohydrate antigen expression.


Nature Medicine | 2010

Innate immune lectins kill bacteria expressing blood group antigen

Sean R. Stowell; Connie M. Arthur; Marcelo Dias-Baruffi; Lílian Cataldi Rodrigues; Jean-Philippe Gourdine; Jamie Heimburg-Molinaro; Tongzhong Ju; Ross J. Molinaro; Carlos A. Rivera-Marrero; Baoyun Xia; David F. Smith; Richard D. Cummings

The expression of ABO(H) blood group antigens causes deletion of cells that generate self-specific antibodies to these antigens but this deletion limits adaptive immunity toward pathogens bearing cognate blood group antigens. To explore potential defense mechanisms against such pathogens, given these limitations in adaptive immunity, we screened for innate proteins that could recognize human blood group antigens. Here we report that two innate immune lectins, galectin-4 (Gal-4) and Gal-8, which are expressed in the intestinal tract, recognize and kill human blood group antigen–expressing Escherichia coli while failing to alter the viability of other E. coli strains or other Gram-negative or Gram-positive organisms both in vitro and in vivo. The killing activity of both Gal-4 and Gal-8 is mediated by their C-terminal domains, occurs rapidly and independently of complement and is accompanied by disruption of membrane integrity. These results demonstrate that innate defense lectins can provide immunity against pathogens that express blood group–like antigens on their surface (pages 263 –264).


Chemistry & Biology | 2009

Novel Fluorescent Glycan Microarray Strategy Reveals Ligands for Galectins

Xuezheng Song; Baoyun Xia; Sean R. Stowell; Yi Lasanajak; David F. Smith; Richard D. Cummings

Galectin-1 (Gal-1) and galectin-3 (Gal-3) are widely expressed galectins with immunoregulatory functions in animals. To explore their glycan specificity, we developed microarrays of naturally occurring glycans using a bifunctional fluorescent linker, 2-amino-N-(2-aminoethyl)-benzamide (AEAB), directly conjugated through its arylamine group by reductive amination to free glycans to form glycan-AEABs (GAEABs). Glycans from natural sources were used to prepare over 200 GAEABs, which were purified by multidimensional high-pressure liquid chromatography and covalently immobilized onto N-hydroxysuccinimide-activated glass slides via their free alkylamine. Fluorescence-based screening demonstrated that Gal-1 recognizes a wide variety of complex N-glycans, whereas Gal-3 primarily recognizes poly-N-acetyllactosamine-containing glycans independent of N-glycan presentation. GAEABs provide a general solution to glycan microarray preparation from natural sources for defining the specificity of glycan-binding proteins.


Nature Methods | 2005

Versatile fluorescent derivatization of glycans for glycomic analysis.

Baoyun Xia; Ziad Kawar; Tongzhong Ju; Richard Alvarez; Goverdhan P. Sachdev; Richard D. Cummings

The new field of functional glycomics encompasses information about both glycan structure and recognition by carbohydrate-binding proteins (CBPs) and is now being explored through glycan array technology. Glycan array construction, however, is limited by the complexity of efficiently generating derivatives of free, reducing glycans with primary amines for conjugation. Here we describe a straightforward method to derivatize glycans with 2,6-diaminopyridine (DAP) to generate fluorescently labeled glycans (glycan-DAP conjugates or GDAPs) that contain a primary amine for further conjugation. We converted a wide variety of glycans, including milk sugars, N-glycans, glycosaminoglycans and chitin-derived glycans, to GDAPs, as verified by HPLC and mass spectrometry. We covalently conjugated GDAPs to N-hydroxysuccinimide (NHS)-activated glass slides, maleimide-activated protein, carboxylated microspheres and NHS-biotin to provide quantifiable fluorescent derivatives. All types of conjugated glycans were well-recognized by appropriate CBPs. Thus, GDAP derivatives provide versatile new tools for biologists to quantify and covalently capture minute quantities of glycans for exploring their structures and functions and generating new glycan arrays from naturally occurring glycans.


Nature Methods | 2011

Shotgun glycomics: a microarray strategy for functional glycomics

Xuezheng Song; Yi Lasanajak; Baoyun Xia; Jamie Heimburg-Molinaro; Jeanne M. Rhea; Hong Ju; Chunmei Zhao; Ross J. Molinaro; Richard D. Cummings; David F. Smith

Major challenges of glycomics are to characterize a glycome and identify functional glycans as ligands for glycan-binding proteins (GBPs). To address these issues we developed a general strategy termed shotgun glycomics. We focus on glycosphingolipids (GSLs), a class of glycoconjugates that is challenging to study, recognized by toxins, antibodies and GBPs. We derivatized GSLs extracted from cells with a heterobifunctional fluorescent tag suitable for covalent immobilization. We separated fluorescent GSLs by multidimensional chromatography, quantified them and coupled them to glass slides to create GSL shotgun microarrays. Then we interrogated the microarrays with cholera toxin, antibodies and sera from individuals with Lyme disease to identify biologically relevant GSLs that we subsequently characterized by mass spectrometry. Shotgun glycomics incorporating GSLs and potentially glycoprotein-derived glycans is an approach for accessing the complex glycomes of animal cells and is a strategy for focusing structural analyses on functionally important glycans.


Analytical Biochemistry | 2009

Glycan reductive isotope labeling for quantitative glycomics

Baoyun Xia; Christa L. Feasley; Goverdhan P. Sachdev; David F. Smith; Richard D. Cummings

Many diseases and disorders are characterized by quantitative and/or qualitative changes in complex carbohydrates. Mass spectrometry methods show promise in monitoring and detecting these important biological changes. Here we report a new glycomics method, termed glycan reductive isotope labeling (GRIL), where free glycans are derivatized by reductive amination with the differentially coded stable isotope tags [(12)C(6)]aniline and [(13)C(6)]aniline. These dual-labeled aniline-tagged glycans can be recovered by reverse-phase chromatography and can be quantified based on ultraviolet (UV) absorbance and relative ion abundances. Unlike previously reported isotopically coded reagents for glycans, GRIL does not contain deuterium, which can be chromatographically resolved. Our method shows no chromatographic resolution of differentially labeled glycans. Mixtures of differentially tagged glycans can be directly compared and quantified using mass spectrometric techniques. We demonstrate the use of GRIL to determine relative differences in glycan amount and composition. We analyze free glycans and glycans enzymatically or chemically released from a variety of standard glycoproteins, as well as human and mouse serum glycoproteins, using this method. This technique allows linear relative quantitation of glycans over a 10-fold concentration range and can accurately quantify sub-picomole levels of released glycans, providing a needed advancement in the field of glycomics.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Cosmc is an essential chaperone for correct protein O-glycosylation

Yingchun Wang; Tongzhong Ju; Xiaokun Ding; Baoyun Xia; Wenyi Wang; Lijun Xia; Miao He; Richard D. Cummings

Cosmc is a molecular chaperone thought to be required for expression of active T-synthase, the only enzyme that galactosylates the Tn antigen (GalNAcα1-Ser/Thr-R) to form core 1 Galβ1–3GalNAcα1-Ser/Thr (T antigen) during mucin type O-glycan biosynthesis. Here we show that ablation of the X-linked Cosmc gene in mice causes embryonic lethality and Tn antigen expression. Loss of Cosmc is associated with loss of T-synthase but not other enzymes required for glycoprotein biosynthesis, demonstrating that Cosmc is specific in vivo for the T-synthase. We generated genetically mosaic mice with a targeted Cosmc deletion and survivors exhibited abnormalities correlated with Tn antigen expression that are related to several human diseases.


ACS Chemical Biology | 2009

Fluorescent Glycosylamides Produced by Microscale Derivatization of Free Glycans for Natural Glycan Microarrays

Xuezheng Song; Yi Lasanajak; Baoyun Xia; David F. Smith; Richard D. Cummings

A novel strategy for creating naturally derived glycan microarrays has been developed. Glycosylamines are prepared from free reducing glycans and stabilized by reaction with acryloyl chloride to generate a glycosylamide in which the reducing monosaccharide has a closed-ring structure. Ozonolysis of the protected glycan yields an active aldehyde, to which a bifunctional fluorescent linker is coupled by reductive amination. The fluorescent derivatives are easily coupled through a residual primary alkylamine to generate glycan microarrays. This strategy preserves structural features of glycans required for antibody recognition and allows development of natural arrays of fluorescent glycans in which the cyclic pyranose structure of the reducing-end sugar residue is retained.

Collaboration


Dive into the Baoyun Xia's collaboration.

Top Co-Authors

Avatar

Richard D. Cummings

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Goverdhan P. Sachdev

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Miao He

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lijun Xia

Oklahoma Medical Research Foundation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge