Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Baozhu Guo is active.

Publication


Featured researches published by Baozhu Guo.


Nature Genetics | 2016

The genome sequences of Arachis duranensis and Arachis ipaensis , the diploid ancestors of cultivated peanut

David J. Bertioli; Steven B. Cannon; Lutz Froenicke; Guodong Huang; Andrew D. Farmer; Ethalinda K. S. Cannon; Xin Liu; Dongying Gao; Josh Clevenger; Sudhansu Dash; Longhui Ren; Márcio C. Moretzsohn; Kenta Shirasawa; Wei Huang; Bruna Vidigal; Brian Abernathy; Ye Chu; Chad E. Niederhuth; Pooja E. Umale; Ana Claudia Guerra Araujo; Alexander Kozik; Kyung Do Kim; Mark D. Burow; Rajeev K. Varshney; Xingjun Wang; Xinyou Zhang; Noelle A. Barkley; Patricia M. Guimarães; Sachiko Isobe; Baozhu Guo

Cultivated peanut (Arachis hypogaea) is an allotetraploid with closely related subgenomes of a total size of ∼2.7 Gb. This makes the assembly of chromosomal pseudomolecules very challenging. As a foundation to understanding the genome of cultivated peanut, we report the genome sequences of its diploid ancestors (Arachis duranensis and Arachis ipaensis). We show that these genomes are similar to cultivated peanuts A and B subgenomes and use them to identify candidate disease resistance genes, to guide tetraploid transcript assemblies and to detect genetic exchange between cultivated peanuts subgenomes. On the basis of remarkably high DNA identity of the A. ipaensis genome and the B subgenome of cultivated peanut and biogeographic evidence, we conclude that A. ipaensis may be a direct descendant of the same population that contributed the B subgenome to cultivated peanut.


BMC Plant Biology | 2009

Utility of EST-derived SSR in cultivated peanut ( Arachis hypogaea L.) and Arachis wild species

Xuanqiang Liang; Xiaoping Chen; Yanbin Hong; Haiyan Liu; Guiyuan Zhou; Shaoxiong Li; Baozhu Guo

BackgroundLack of sufficient molecular markers hinders current genetic research in peanuts (Arachis hypogaea L.). It is necessary to develop more molecular markers for potential use in peanut genetic research. With the development of peanut EST projects, a vast amount of available EST sequence data has been generated. These data offered an opportunity to identify SSR in ESTs by data mining.ResultsIn this study, we investigated 24,238 ESTs for the identification and development of SSR markers. In total, 881 SSRs were identified from 780 SSR-containing unique ESTs. On an average, one SSR was found per 7.3 kb of EST sequence with tri-nucleotide motifs (63.9%) being the most abundant followed by di- (32.7%), tetra- (1.7%), hexa- (1.0%) and penta-nucleotide (0.7%) repeat types. The top six motifs included AG/TC (27.7%), AAG/TTC (17.4%), AAT/TTA (11.9%), ACC/TGG (7.72%), ACT/TGA (7.26%) and AT/TA (6.3%). Based on the 780 SSR-containing ESTs, a total of 290 primer pairs were successfully designed and used for validation of the amplification and assessment of the polymorphism among 22 genotypes of cultivated peanuts and 16 accessions of wild species. The results showed that 251 primer pairs yielded amplification products, of which 26 and 221 primer pairs exhibited polymorphism among the cultivated and wild species examined, respectively. Two to four alleles were found in cultivated peanuts, while 3–8 alleles presented in wild species. The apparent broad polymorphism was further confirmed by cloning and sequencing of amplified alleles. Sequence analysis of selected amplified alleles revealed that allelic diversity could be attributed mainly to differences in repeat type and length in the microsatellite regions. In addition, a few single base mutations were observed in the microsatellite flanking regions.ConclusionThis study gives an insight into the frequency, type and distribution of peanut EST-SSRs and demonstrates successful development of EST-SSR markers in cultivated peanut. These EST-SSR markers could enrich the current resource of molecular markers for the peanut community and would be useful for qualitative and quantitative trait mapping, marker-assisted selection, and genetic diversity studies in cultivated peanut as well as related Arachis species. All of the 251 working primer pairs with names, motifs, repeat types, primer sequences, and alleles tested in cultivated and wild species are listed in Additional File 1.


Biotechnology Advances | 2012

Advances in Arachis genomics for peanut improvement

Manish K. Pandey; Emmanuel Monyo; Peggy Ozias-Akins; Xuanquiang Liang; Patricia M. Guimarães; S. N. Nigam; Hari D. Upadhyaya; Pasupuleti Janila; Xinyou Zhang; Baozhu Guo; Douglas R. Cook; David J. Bertioli; Richard W. Michelmore; Rajeev K. Varshney

Peanut genomics is very challenging due to its inherent problem of genetic architecture. Blockage of gene flow from diploid wild relatives to the tetraploid; cultivated peanut, recent polyploidization combined with self pollination, and the narrow genetic base of the primary genepool have resulted in low genetic diversity that has remained a major bottleneck for genetic improvement of peanut. Harnessing the rich source of wild relatives has been negligible due to differences in ploidy level as well as genetic drag and undesirable alleles for low yield. Lack of appropriate genomic resources has severely hampered molecular breeding activities, and this crop remains among the less-studied crops. The last five years, however, have witnessed accelerated development of genomic resources such as development of molecular markers, genetic and physical maps, generation of expressed sequenced tags (ESTs), development of mutant resources, and functional genomics platforms that facilitate the identification of QTLs and discovery of genes associated with tolerance/resistance to abiotic and biotic stresses and agronomic traits. Molecular breeding has been initiated for several traits for development of superior genotypes. The genome or at least gene space sequence is expected to be available in near future and this will further accelerate use of biotechnological approaches for peanut improvement.


Phytopathology | 1998

Resistance to Aspergillus flavus in Corn Kernels Is Associated with a 14-kDa Protein.

Zhi-Yuan Chen; Robert L. Brown; A. R. Lax; Baozhu Guo; Thomas E. Cleveland; J. S. Russin

ABSTRACT Corn genotypes resistant or susceptible to Aspergillus flavus were extracted for protein analysis using a pH 2.8 buffer. The profile of protein extracts revealed that a 14-kDa protein is present in relatively high concentration in kernels of seven resistant corn genotypes, but is absent or present only in low concentration in kernels of six susceptible ones. The N-terminal sequence of this 14-kDa protein showed 100% homology to a corn trypsin inhibitor. The 14-kDa protein purified from resistant varieties also demonstrated in vitro inhibition of both trypsin activity and the growth of A. flavus. This is the first demonstration of antifungal activity of a corn 14-kDa trypsin inhibitor protein. The expression of this protein among tested genotypes may be related to their difference in resistance to A. flavus infection and subsequent aflatoxin contamination.


DNA Research | 2013

Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes.

Kenta Shirasawa; David J. Bertioli; Rajeev K. Varshney; Márcio C. Moretzsohn; Soraya C. M. Leal-Bertioli; Mahendar Thudi; Manish K. Pandey; Jean-François Rami; Daniel Foncéka; M. V. C. Gowda; Hongde Qin; Baozhu Guo; Yanbin Hong; Xuanqiang Liang; Hideki Hirakawa; Satoshi Tabata; Sachiko Isobe

The complex, tetraploid genome structure of peanut (Arachis hypogaea) has obstructed advances in genetics and genomics in the species. The aim of this study is to understand the genome structure of Arachis by developing a high-density integrated consensus map. Three recombinant inbred line populations derived from crosses between the A genome diploid species, Arachis duranensis and Arachis stenosperma; the B genome diploid species, Arachis ipaënsis and Arachis magna; and between the AB genome tetraploids, A. hypogaea and an artificial amphidiploid (A. ipaënsis × A. duranensis)4×, were used to construct genetic linkage maps: 10 linkage groups (LGs) of 544 cM with 597 loci for the A genome; 10 LGs of 461 cM with 798 loci for the B genome; and 20 LGs of 1442 cM with 1469 loci for the AB genome. The resultant maps plus 13 published maps were integrated into a consensus map covering 2651 cM with 3693 marker loci which was anchored to 20 consensus LGs corresponding to the A and B genomes. The comparative genomics with genome sequences of Cajanus cajan, Glycine max, Lotus japonicus, and Medicago truncatula revealed that the Arachis genome has segmented synteny relationship to the other legumes. The comparative maps in legumes, integrated tetraploid consensus maps, and genome-specific diploid maps will increase the genetic and genomic understanding of Arachis and should facilitate molecular breeding.


Euphytica | 2005

Simple sequence repeat markers for botanical varieties of cultivated peanut (Arachis hypogaea L.)

Guohao He; Ronghua Meng; Hui Gao; Baozhu Guo; Guoqing Gao; Melanie Newman; Roy N. Pittman; C. S. Prakash

Cultivated peanut (Arachis hypogaea L.) consists of six botanical varieties. Identification of DNA markers associated with botanical varieties would be useful in plant genotyping, germplasm management, and evolutionary studies. We have developed 130 simple sequence repeat (SSR) markers in peanut, 38 of which were used in this study because of their ability in detecting genetic polymorphism among 24 peanut accessions. Eight SSR markers were found useful to classify botanical varieties. Among them, six SSR markers were specific to botanical varieties fastigiata and vulgaris, one to botanical varieties hypogaea and hirsuta, and one to botanical varieties peruviana, and aequatoriana. Also, three of them derived from peanut expressed sequence tags (ESTs) were associated with putative genes. As botanical varieties have different morphological traits and belong to different subspecies in A. hypogaea, these markers might be associated with genes involved in the expression of morphological traits. The results also suggested that SSRs (also called microsatellites) might play a role in shaping evolution of cultivated peanut. Multiplex PCR of botanical variety-specific markers could be applied to facilitate efficient genotyping of the peanut lines.


Phytopathology | 1997

Germination Induces Accumulation of Specific Proteins and Antifungal Activities in Corn Kernels

Baozhu Guo; Zhi-Yuan Chen; Robert L. Brown; A. R. Lax; Thomas E. Cleveland; J. S. Russin; A. D. Mehta; C. P. Selitrennikoff; N. W. Widstrom

ABSTRACT This study examined protein induction and accumulation during imbibition and germination of corn kernels, as well as antifungal activities of extracts from germinating kernels against Aspergillus flavus and Fusarium moniliforme. Genotypes studied included GT-MAS:gk and Mp420, which are resistant to A. flavus infection and aflatoxin accumulation, and Pioneer 3154 and Deltapine G-4666, which are susceptible to A. flavus infection and aflatoxin accumulation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis resolved five protein bands that were present at higher concentrations in germinated kernels than in nongerminated kernels. Western blot analyses revealed that one of these proteins reacted with the 22-kDa zeamatin antiserum, and a zeamatin-like protein accumulated to a higher concentration in germinated kernels. Two protein bands from dry kernels that reacted with ribosome-inactivating protein (RIP) antiserum were identified as the 32-kDa proRIP-like form and an 18-kDa peptide of the two peptides that form active RIP. However, in germinated kernels, two protein bands that reacted with RIP antiserum were identified as two RIP-like peptides with a molecular mass of approximately 18 and 9 kDa. Purified RIP and zeamatin from corn inhibited growth of A. flavus. Bioassays of germinated kernel extracts from all four genotypes exhibited antifungal activity against A. flavus and F. moniliforme, with extracts from the susceptible genotypes showing greater inhibition zones. This study provides evidence of protein induction in corn kernels during imbibition or the early stages of germination, and the induced proteins may be related to our previous findings of germination-associated resistance in the corn kernel, especially in the susceptible kernels.


PLOS ONE | 2012

An International Reference Consensus Genetic Map with 897 Marker Loci Based on 11 Mapping Populations for Tetraploid Groundnut (Arachis hypogaea L.)

Bhimana Gautami; Daniel Foncéka; Manish K. Pandey; Márcio C. Moretzsohn; Venkataswamy Sujay; Hongde Qin; Yanbin Hong; Issa Faye; Xiaoping Chen; Amindala BhanuPrakash; Trushar Shah; M. V. C. Gowda; S. N. Nigam; Xuanqiang Liang; Dave A. Hoisington; Baozhu Guo; David J. Bertioli; Jean-François Rami; Rajeev K. Varshney

Only a few genetic maps based on recombinant inbred line (RIL) and backcross (BC) populations have been developed for tetraploid groundnut. The marker density, however, is not very satisfactory especially in the context of large genome size (2800 Mb/1C) and 20 linkage groups (LGs). Therefore, using marker segregation data for 10 RILs and one BC population from the international groundnut community, with the help of common markers across different populations, a reference consensus genetic map has been developed. This map is comprised of 897 marker loci including 895 simple sequence repeat (SSR) and 2 cleaved amplified polymorphic sequence (CAPS) loci distributed on 20 LGs (a01–a10 and b01–b10) spanning a map distance of 3, 863.6 cM with an average map density of 4.4 cM. The highest numbers of markers (70) were integrated on a01 and the least number of markers (21) on b09. The marker density, however, was lowest (6.4 cM) on a08 and highest (2.5 cM) on a01. The reference consensus map has been divided into 20 cM long 203 BINs. These BINs carry 1 (a10_02, a10_08 and a10_09) to 20 (a10_04) loci with an average of 4 marker loci per BIN. Although the polymorphism information content (PIC) value was available for 526 markers in 190 BINs, 36 and 111 BINs have at least one marker with >0.70 and >0.50 PIC values, respectively. This information will be useful for selecting highly informative and uniformly distributed markers for developing new genetic maps, background selection and diversity analysis. Most importantly, this reference consensus map will serve as a reliable reference for aligning new genetic and physical maps, performing QTL analysis in a multi-populations design, evaluating the genetic background effect on QTL expression, and serving other genetic and molecular breeding activities in groundnut.


BMC Plant Biology | 2012

Development and characterization of BAC-end sequence derived SSRs, and their incorporation into a new higher density genetic map for cultivated peanut (Arachis hypogaea L.)

Hui Wang; R. Varma Penmetsa; Mei Yuan; Limin Gong; Yongli Zhao; Baozhu Guo; Andrew D. Farmer; Benjamin D. Rosen; Jinliang Gao; Sachiko Isobe; David J. Bertioli; Rajeev K. Varshney; Douglas R. Cook; Guohao He

BackgroundCultivated peanut (Arachis hypogaea L.) is an important crop worldwide, valued for its edible oil and digestible protein. It has a very narrow genetic base that may well derive from a relatively recent single polyploidization event. Accordingly molecular markers have low levels of polymorphism and the number of polymorphic molecular markers available for cultivated peanut is still limiting.ResultsHere, we report a large set of BAC-end sequences (BES), use them for developing SSR (BES-SSR) markers, and apply them in genetic linkage mapping. The majority of BESs had no detectable homology to known genes (49.5%) followed by sequences with similarity to known genes (44.3%), and miscellaneous sequences (6.2%) such as transposable element, retroelement, and organelle sequences. A total of 1,424 SSRs were identified from 36,435 BESs. Among these identified SSRs, dinucleotide (47.4%) and trinucleotide (37.1%) SSRs were predominant. The new set of 1,152 SSRs as well as about 4,000 published or unpublished SSRs were screened against two parents of a mapping population, generating 385 polymorphic loci. A genetic linkage map was constructed, consisting of 318 loci onto 21 linkage groups and covering a total of 1,674.4 cM, with an average distance of 5.3 cM between adjacent loci. Two markers related to resistance gene homologs (RGH) were mapped to two different groups, thus anchoring 1 RGH-BAC contig and 1 singleton.ConclusionsThe SSRs mined from BESs will be of use in further molecular analysis of the peanut genome, providing a novel set of markers, genetically anchoring BAC clones, and incorporating gene sequences into a linkage map. This will aid in the identification of markers linked to genes of interest and map-based cloning.


Phytopathology | 1997

Comparison of Kernel Wax from Corn Genotypes Resistant or Susceptible to Aspergillus flavus.

J. S. Russin; Baozhu Guo; K. M. Tubajika; Robert L. Brown; Thomas E. Cleveland; N. W. Widstrom

ABSTRACT Russin, J. S., Guo, B. Z., Tubajika, K. M., Brown, R. L., Cleveland, T. E., and Widstrom, N. W. 1997. Comparison of kernel wax from corn genotypes resistant or susceptible to Aspergillus flavus. Phytopathology 87: 529-533.Kernels of corn genotype GT-MAS: gk are resistant to Aspergillus flavus. Earlier studies showed that this resistance is due in part to kernel pericarp wax. Experiments were conducted to compare wax from GTMAS: gk kernels with that from kernels of several susceptible commercial hybrids. GT-MAS: gk had more pericarp wax than did the susceptible hybrids. Scanning electron microscopy revealed that GT-MAS: gk kernels appeared rough and showed abundant wax deposits on kernel surfaces. Susceptible kernels appeared much more smooth and lacked the abundant surface deposits observed in GT-MAS: gk. In vitro bioassays showed that kernel wax from GT-MAS: gk reduced A. flavus colony diameter by 35%. Colony diameters on a medium amended with wax from susceptible kernels did not differ from those of controls. Thin-layer chromatography and analyses of chromatograms using NIH Image software showed a distinctive composition for GT-MAS: gk kernel wax. Chromatograms of wax from GT-MAS: gk contained a peak unique to this genotype, but also lacked a peak common to all susceptible hybrids. This is the first report of specific kernel factors involved in resistance to A. flavus in corn.

Collaboration


Dive into the Baozhu Guo's collaboration.

Top Co-Authors

Avatar

Rajeev K. Varshney

International Crops Research Institute for the Semi-Arid Tropics

View shared research outputs
Top Co-Authors

Avatar

C. Corley Holbrook

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Manish K. Pandey

International Crops Research Institute for the Semi-Arid Tropics

View shared research outputs
Top Co-Authors

Avatar

Brian T. Scully

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hui Wang

University of Georgia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge