Barak Katz
Ben-Gurion University of the Negev
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Barak Katz.
Applied Optics | 2009
Natan T. Shaked; Barak Katz; Joseph Rosen
Methods of generating multiple viewpoint projection holograms of three-dimensional (3-D) realistic objects illuminated by incoherent white light are reviewed in this paper. Using these methods, it is possible to obtain holograms with a simple digital camera, operating in regular light conditions. Thus, most disadvantages characterizing conventional digital holography, namely the need for a powerful, highly coherent laser and extreme stability of the optical system, are avoided. The proposed holographic processes are composed of two stages. In the first stage, regular intensity-based images of the 3-D scene are captured from multiple points of view by a simple digital camera. In the second stage, the acquired projections are digitally processed to yield the complex digital hologram of the 3-D scene, where no interference is involved in the process. For highly reflecting 3-D objects, the resulting hologram is equivalent to an optical hologram of the objects recorded from the central point of view. We first review various methods to acquire the multiple viewpoint projections. These include the use of a microlens array and a macrolens array, as well as digitally generated projections that are not acquired optically. Next, we show how to digitally process the acquired projections to Fourier, Fresnel, and image holograms. Additionally, to obtain certain advantages over the known types of holograms, the proposed hybrid optical-digital process can yield novel types of holograms such as the modified Fresnel hologram and the protected correlation hologram. The prospective goal of these methods is to facilitate the design of a simple and portable digital holographic camera that can be useful for a variety of practical applications, including 3-D video acquisition and various types of biomedical imaging. We review several of these applications to signify the advantages of multiple viewpoint projection holography.
Optics Express | 2012
Barak Katz; Joseph Rosen; Roy Kelner; Gary Brooker
Fresnel incoherent correlation holography (FINCH) records holograms under incoherent illumination. FINCH was implemented with two focal length diffractive lenses on a spatial light modulator (SLM). Improved image resolution over previous single lens systems and at wider bandwidths was observed. For a given image magnification and light source bandwidth, FINCH with two lenses of close focal lengths yields a better hologram in comparison to a single diffractive lens FINCH. Three techniques of lens multiplexing on the SLM were tested and the best method was randomly and uniformly distributing the two lenses. The improved quality of the hologram results from a reduced optical path difference of the interfering beams and increased efficiency.
IEEE Transactions on Broadcasting | 2007
Barak Katz; Shlomo Greenberg; N. Yarkoni; Nathan Blaunstien; Ran Giladi
Video quality suffers significant degradation when transmitted over error-prone channel, due to packet loss, errors caused by fading in wireless channel and due to the video codec prediction mechanisms. The H.264/AVC standard suggests some new error-resilient features to enable reliable transmission of compressed video signal over lossy packet networks. Two of those new features are the Redundant Slices and the Flexible Macro-Block Ordering (FMO). In this paper we propose a new error-resilient scheme which merges the H.264/AVC FMO feature with a new technique for dynamic allocation of redundant slices depending on the wireless channel fading parameters. We suggest using a unique smart dynamic redundant slices allocation scheme which considers the dynamic wireless channel parameters rather than using the classical standard static allocation. The proposed redundant slice allocation algorithm is based on both Average Fade Duration (AFD), and Level Cross Rate (LCR) channels characteristics. Moreover, we propose a new Explicit Spiral-Interleaved (ESI) flexible macroblocks ordering technique, which outperforms all other FMO types. The new ESI ordering results in effective error scattering which maximize the number of correctly received macroblocks located around corrupted macroblocks, leading to better error concealment. The proposed scheme greatly improves video transmission quality over lossy wireless transmission channels. Simulations results for wireless channel characterized by Rayleigh fading indicate that the proposed method improves the standard static allocation of redundant slices in terms of PSNR by about 2.5dB. Performance evaluations show that our approach is especially suited for applications such as video conferencing and mobile TV, where typically a specific main important Region of Interest should be more carefully protected
Optics Express | 2010
Barak Katz; Joseph Rosen
We present a new lensless incoherent holographic system operating in a synthetic aperture mode. Spatial resolution exceeding the Rayleigh limit of the system is obtained by tiling digitally several Fresnel holographic elements into a complete Fresnel hologram of the observed object. Each element is acquired by the limited-aperture system from different point of view. This method is demonstrated experimentally by combining three holographic elements recorded with white light illumination which is emitted from a binary grating.
Optica | 2014
Roy Kelner; Barak Katz; Joseph Rosen
We propose a new type of confocal microscope using Fresnel incoherent correlation holography (FINCH). Presented here is a confocal configuration of FINCH using a phase pinhole and point illumination that is able to suppress out-of-focus information from the recorded hologram and hence combine the super-resolution capabilities of FINCH with the sectioning capabilities of confocal microscopy.
Optics Express | 2007
Barak Katz; Natan T. Shaked; Joseph Rosen
We present an improved method for recording a synthesized Fourier hologram under incoherent white-light illumination. The advantage of the method is that the number of real projections needed for generating the hologram is significantly reduced. The new method, designated as synthetic projection holography, is demonstrated experimentally. We show that the synthetic projection holography barely affects the reconstructed images. However, by increasing the number of observed projections one can improve the synthetic projection hologram quality.
Optics Express | 2011
Barak Katz; Joseph Rosen
Synthetic aperture with Fresnel elements (SAFE) is an incoherent holographic imaging system in which the complete hologram is a mosaic of several holograms captured from different points of view. In this paper we investigate a new scheme of SAFE which may be used as a basis for designing a new type of synthetic aperture telescopes. Laboratory in-door experiments may provide the proof of concept for such a new design.
Applied Optics | 2010
Barak Katz; Dov Wulich; Joseph Rosen
An optimal setup in the sense of imaging resolution for the Fresnel incoherent correlation holography (FINCH) system is proposed and analyzed. Experimental results of the proposed setup in reflection mode suffer from low signal-to-noise ratio (SNR) due to a granular noise. SNR improvement is achieved by two methods that rely on increasing the initial amount of phase-shifted recorded holograms. In the first method, we average over several independent complex-valued digital holograms obtained by recording different sets of three digital phase-shifted holograms. In the second method, the least-squares solution for solving a system of an overdetermined set of linear equations is approximated by utilizing the Moore-Penrose pseudoinverse. These methods improve the resolution of the reconstructed image due to their ability to reveal fine and weak details of the observed object.
Optics Letters | 2013
Yair Rivenson; Barak Katz; Roy Kelner; Joseph Rosen
We present a new single channel in-line setup for holographic recording that can properly record various objects that cannot be recorded by the Gabor holographic method. This configuration allows the recording of holograms based on several modalities while addressing important issues of the original Gabor setup, including the well-known twin-image problem and the weak scattering condition.
Optics Express | 2014
Roy Kelner; Barak Katz; Joseph Rosen
Joint object reference digital interferometer (JORDI) is a recently developed system capable of recording holograms of various types [Opt. Lett. 38(22), 4719 (2013)]. Presented here is a new enhanced system design that is based on the previous JORDI. While the previous JORDI has been based purely on diffractive optical elements, displayed on spatial light modulators, the present design incorporates an additional refractive objective lens, thus enabling hologram recording with improved resolution and increased system applicability. Experimental results demonstrate successful hologram recording for various types of objects, including transmissive, reflective, three-dimensional, phase and highly scattering objects. The resolution limit of the system is analyzed and experimentally validated. Finally, the suitability of JORDI for microscopic applications is verified as a microscope objective based configuration of the system is demonstrated.