Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barak Markus is active.

Publication


Featured researches published by Barak Markus.


Human Mutation | 2013

A Deletion Mutation in TMEM38B Associated with Autosomal Recessive Osteogenesis Imperfecta

Michael Volodarsky; Barak Markus; Idan Cohen; Orna Staretz-Chacham; Hagit Flusser; Daniella Landau; Ilan Shelef; Yshaia Langer; Ohad S. Birk

Autosomal recessive osteogenesis imperfecta (OI) was diagnosed in three unrelated Israeli Bedouin consanguineous families. Fractures were evident in all cases in infancy. Genome‐wide linkage analysis ruled out association with any of the known OI genes, and identified a single homozygosity locus of approximately 2 Mb on chromosome 9 common to all affected individuals (maximum multipoint lod score 6.5). Whole exome sequencing identified only a single mutation within this locus that was shared by all affected individuals: a homozygous deletion mutation of exon 4 of TMEM38B, leading to an early stop codon and a truncated protein, as well as low TMEM38B mRNA levels. TMEM38B encodes TRIC‐B, a ubiquitous component of TRIC, a monovalent cation‐specific channel involved in Ca2+ release from intracellular stores that has been shown to act in cell differentiation. Molecular mechanisms through which a TMEM38B mutation might lead to an OI phenotype are yet to be explored.


American Journal of Human Genetics | 2010

Pelizaeus-Merzbacher-like Disease Caused by AIMP1/p43 Homozygous Mutation

Miora Feinstein; Barak Markus; Iris Noyman; Hannah Shalev; Hagit Flusser; Ilan Shelef; Keren Liani-Leibson; Zamir Shorer; Idan Cohen; Shareef Khateeb; Sara Sivan; Ohad S. Birk

Pelizaeus-Merzbacher disease is an X-linked hypomyelinating leukodystrophy caused by PLP1 mutations. A similar autosomal-recessive phenotype, Pelizaeus-Merzbacher-like disease (PMLD), has been shown to be caused by homozygous mutations in GJC2 or HSPD1. We report a consanguineous Israeli Bedouin kindred with clinical and radiological findings compatible with PMLD in which linkage to PLP1, GJC2, and HSPD1 was excluded. Through genome-wide homozygosity mapping and mutation analysis, we demonstrated in all affected individuals a homozygous frameshift mutation that fully abrogates the main active domain of AIMP1, encoding ARS-interacting multifunctional protein 1. The mutation fully segregates with the disease-associated phenotype and was not found in 250 Bedouin controls. Our findings are in line with the previously demonstrated inability of mutant mice lacking the AIMP1/p43 ortholog to maintain axon integrity in the central and peripheral neural system.


The Journal of Clinical Endocrinology and Metabolism | 2013

Varied clinical presentations of seven patients with mutations in CYP11A1 encoding the cholesterol side-chain cleavage enzyme, P450scc.

Meng Kian Tee; Michal Abramsohn; Neta Loewenthal; Mark Harris; Sudeep Siwach; Ana Kaplinsky; Barak Markus; Ohad S. Birk; Val C. Sheffield; Ruti Pavari; Eli Hershkovitz; Walter L. Miller

CONTEXT The cholesterol side-chain cleavage enzyme P450scc, encoded by CYP11A1, converts cholesterol to pregnenolone to initiate steroidogenesis. P450scc deficiency can disrupt adrenal and gonadal steroidogenesis, resembling congenital lipoid adrenal hyperplasia clinically and hormonally; only 12 such patients have been reported previously. OBJECTIVE We sought to expand clinical and genetic experience with P450scc deficiency. PATIENTS AND METHODS We sequenced candidate genes in 7 children with adrenal insufficiency who lacked disordered sexual development. P450scc missense mutations were recreated in the F2 vector, which expresses the fusion protein P450scc-Ferredoxin Reductase-Ferredoxin. COS-1 cells were transfected, production of pregnenolone was assayed, and apparent kinetic parameters were calculated. Previously described P450scc mutants were assayed in parallel. RESULTS Four of five Bedouin children in one kindred were compound heterozygotes for mutations c.694C>T (Arg232Stop) and c.644T>C (Phe215Ser). Single-nucleotide polymorphism analysis confirmed segregation of these mutations. The fifth kindred member and another Bedouin patient presented in infancy and were homozygous for Arg232Stop. A patient from Fiji presenting in infancy was homozygous for c.358T>C (Arg120Stop). All mutations are novel. As assayed in the F2 fusion protein, P450scc Phe215Ser retained 2.5% of wild-type activity; previously described mutants Leu141Trp and Ala269Val had 2.6% and 12% of wild-type activity, respectively, and Val415Glu and c.835delA lacked detectable activity. CONCLUSIONS Although P450scc is required to produce placental progesterone required to maintain pregnancy, severe mutations in P450scc are compatible with term gestation; milder P450scc mutations may present later without disordered sexual development. Enlarged adrenals usually distinguish steroidogenic acute regulatory protein deficiency from P450scc deficiency, but only DNA sequencing is definitive.


Human Mutation | 2012

Autosomal recessive lethal congenital contractural syndrome type 4 (LCCS4) caused by a mutation in MYBPC1

Barak Markus; Ginat Narkis; Daniella Landau; Ruth Birk; Idan Cohen; Ohad S. Birk

Autosomal recessive lethal congenital contractural syndrome (LCCS) is a severe form of neuromuscular arthrogryposis. We previously showed that this phenotype is caused in two unrelated inbred Bedouin tribes by different defects in the phosphatidylinositol pathway. However, the molecular basis of the same phenotype in other tribes remained elusive. Whole exome sequencing identified a novel LCCS founder mutation within a minimal shared homozygosity locus of approximately 1 Mb in two affected individuals of different tribes: a homozygous premature stop producing mutation in MYBPC1, encoding myosin‐binding protein C, slow type. A dominant missense mutation in MYBPC1 was previously shown to cause mild distal arthrogryposis. We now show that a recessive mutation abrogating all functional domains in the same gene leads to LCCS. Hum Mutat 33:1435–1438, 2012.


European Journal of Human Genetics | 2011

The desmosterolosis phenotype: spasticity, microcephaly and micrognathia with agenesis of corpus callosum and loss of white matter

Jenny Zolotushko; Hagit Flusser; Barak Markus; Ilan Shelef; Yshaia Langer; Maura Heverin; Ingemar Björkhem; Sara Sivan; Ohad S. Birk

Desmosterolosis is a rare autosomal recessive disorder of elevated levels of the cholesterol precursor desmosterol in plasma, tissue and cultured cells. With only two sporadic cases described to date with two very different phenotypes, the clinical entity arising from mutations in 24-dehydrocholesterol reductase (DHCR24) has yet to be defined. We now describe consanguineous Bedouin kindred with four surviving affected individuals, all presenting with severe failure to thrive, psychomotor retardation, microcephaly, micrognathia and spasticity with variable degree of hand contractures. Convulsions near birth, nystagmus and strabismus were found in most. Brain MRI demonstrated significant reduction in white matter and near agenesis of corpus callosum in all. Genome-wide linkage analysis and fine mapping defined a 6.75 cM disease-associated locus in chromosome 1 (maximum multipoint LOD score of six), and sequencing of candidate genes within this locus identified in the affected individuals a homozygous missense mutation in DHCR24 leading to dramatically augmented plasma desmosterol levels. We thus establish a clear consistent phenotype of desmosterolosis (MIM 602398).


European Journal of Human Genetics | 2014

Isolated foveal hypoplasia with secondary nystagmus and low vision is associated with a homozygous SLC38A8 mutation

Yonatan Perez; Libe Gradstein; Hagit Flusser; Barak Markus; Idan Cohen; Yshaia Langer; Mira Marcus; Tova Lifshitz; Rotem Kadir; Ohad S. Birk

Foveal hypoplasia, always accompanied by nystagmus, is found as part of the clinical spectrum of various eye disorders such as aniridia, albinism and achromatopsia. However, the molecular basis of isolated autosomal recessive foveal hypoplasia is yet unknown. Individuals of apparently unrelated non consanguineous Israeli families of Jewish Indian (Mumbai) ancestry presented with isolated foveal hypoplasia associated with congenital nystagmus and reduced visual acuity. Genome-wide homozygosity mapping followed by fine mapping defined a 830 Kb disease-associated locus (LOD score 3.5). Whole-exome sequencing identified a single missense mutation in the homozygosity region: c.95T>G, p.(Ile32Ser), in a conserved amino acid within the first predicted transmembrane domain of SLC38A8. The mutation fully segregated with the disease-associated phenotype, demonstrating an ∼10% carrier rate in Mumbai Jews. SLC38A8 encodes a putative sodium-dependent amino-acid/proton antiporter, which we showed to be expressed solely in the eye. Thus, a homozygous SLC38A8 mutation likely underlies isolated foveal hypoplasia.


Heredity | 2014

Deciphering the fine-structure of tribal admixture in the Bedouin population using genomic data.

Barak Markus; I Alshafee; Ohad S. Birk

The Bedouin Israeli population is highly inbred and structured with a very high prevalence of recessive diseases. Many studies in the past two decades focused on linkage analysis in large, multiple consanguineous pedigrees of this population. The advent of high-throughput technologies motivated researchers to search for rare variants shared between smaller pedigrees, integrating data from clinically similar yet seemingly non-related sporadic cases. However, such analyses are challenging because, without pedigree data, there is no prior knowledge regarding possible relatedness between the sporadic cases. Here, we describe models and techniques for the study of relationships between pedigrees and use them for the inference of tribal co-ancestry, delineating the complex social interactions between different tribes in the Negev Bedouins of southern Israel. Through our analysis, we differentiate between tribes that share many yet small genomic segments because of co-ancestry versus tribes that share larger segments because of recent admixture. The emergent pattern is well correlated with the prevalence of rare mutations in the different tribes. Tribes that do not intermarry, mostly because of social restrictions, hold private mutations, whereas tribes that do intermarry demonstrate a genetic flow of mutations between them. Thus, social structure within an inbred community can be delineated through genomic data, with implications to genetic counseling and genetic mapping.


PLOS Genetics | 2016

ALFY-Controlled DVL3 Autophagy Regulates Wnt Signaling, Determining Human Brain Size

Rotem Kadir; Tamar Harel; Barak Markus; Yonatan Perez; Idan Cohen; Michael Volodarsky; Miora Feintsein-Linial; Elana Chervinski; Joël Zlotogora; Sara Sivan; Ramon Y. Birnbaum; Uri Abdu; Stavit A. Shalev; Ohad S. Birk

Primary microcephaly is a congenital neurodevelopmental disorder of reduced head circumference and brain volume, with fewer neurons in the cortex of the developing brain due to premature transition between symmetrical and asymmetrical cellular division of the neuronal stem cell layer during neurogenesis. We now show through linkage analysis and whole exome sequencing, that a dominant mutation in ALFY, encoding an autophagy scaffold protein, causes human primary microcephaly. We demonstrate the dominant effect of the mutation in drosophila: transgenic flies harboring the human mutant allele display small brain volume, recapitulating the disease phenotype. Moreover, eye-specific expression of human mutant ALFY causes rough eye phenotype. In molecular terms, we demonstrate that normally ALFY attenuates the canonical Wnt signaling pathway via autophagy-dependent removal specifically of aggregates of DVL3 and not of Dvl1 or Dvl2. Thus, autophagic attenuation of Wnt signaling through removal of Dvl3 aggregates by ALFY acts in determining human brain size.


Bioinformatics | 2011

Integration of SNP genotyping confidence scores in IBD inference

Barak Markus; Ohad S. Birk; Dan Geiger

MOTIVATION High-throughput single nucleotide polymorphism (SNP) arrays have become the standard platform for linkage and association analyses. The high SNP density of these platforms allows high-resolution identification of ancestral recombination events even for distant relatives many generations apart. However, such inference is sensitive to marker mistyping and current error detection methods rely on the genotyping of additional close relatives. Genotyping algorithms provide a confidence score for each marker call that is currently not integrated in existing methods. There is a need for a model that incorporates this prior information within the standard identical by descent (IBD) and association analyses. RESULTS We propose a novel model that incorporates marker confidence scores within IBD methods based on the Lander-Green Hidden Markov Model. The novel parameter of this model is the joint distribution of confidence scores and error status per array. We estimate this probability distribution by applying a modified expectation-maximization (EM) procedure on data from nuclear families genotyped with Affymetrix 250K SNP arrays. The converged tables from two different genotyping algorithms are shown for a wide range of error rates. We demonstrate the efficacy of our method in refining the detection of IBD signals using nuclear pedigrees and distant relatives. AVAILABILITY Plinke, a new version of Plink with an extended pairwise IBD inference model allowing per marker error probabilities is freely available at: http://bioinfo.bgu.ac.il/bsu/software/plinke. CONTACT [email protected]; [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.


European Journal of Human Genetics | 2015

A syndrome of congenital microcephaly, intellectual disability and dysmorphism with a homozygous mutation in FRMD4A

Dina Fine; Hagit Flusser; Barak Markus; Zamir Shorer; Libe Gradstein; Shareef Khateeb; Yshia Langer; Ginat Narkis; Ruth Birk; Aharon Galil; Ilan Shelef; Ohad S. Birk

A consanguineous Bedouin Israeli kindred presented with a novel autosomal recessive intellectual disability syndrome of congenital microcephaly, low anterior hairline, bitemporal narrowing, low-set protruding ears, strabismus and tented thick eyebrows with sparse hair in their medial segment. Brain imaging demonstrated various degrees of agenesis of corpus callosum and hypoplasia of the vermis and cerebellum. Genome-wide linkage analysis followed by fine mapping defined a 7.67 Mb disease-associated locus (LOD score 4.99 at θ=0 for marker D10S1653). Sequencing of the 48 genes within the locus identified a single non-synonymous homozygous duplication frameshift mutation of 13 nucleotides (c.2134_2146dup13) within the coding region of FRMD4A, that was common to all affected individuals and not found in 180 non-related Bedouin controls. Three of 50 remotely related healthy controls of the same tribe were heterozygous for the mutation. FRMD4A, member of the FERM superfamily, is involved in cell structure, transport and signaling. It regulates cell polarity by playing an important role in the activation of ARF6, mediating the interaction between Par3 and the ARF6 guanine nucleotide exchange factor. ARF6 is known to modulate cell polarity in neurons, and regulates dendritic branching in hippocampal neurons and neurite outgrowth. The FRMD4 domain that is essential for determining cell polarity through interaction with Par3 is truncated by the c.2134_2146dup13 mutation. FRMD4A polymorphisms were recently suggested to be a risk factor for Alzheimer’s disease. We now show a homozygous frameshift mutation of the same gene in a severe neurologic syndrome with unique dysmorphism.

Collaboration


Dive into the Barak Markus's collaboration.

Top Co-Authors

Avatar

Ohad S. Birk

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Hagit Flusser

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Idan Cohen

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Ilan Shelef

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Sara Sivan

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Shareef Khateeb

National Institute of Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Zamir Shorer

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Keren Liani-Leibson

National Institute of Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Miora Feinstein

National Institute of Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Hannah Shalev

Ben-Gurion University of the Negev

View shared research outputs
Researchain Logo
Decentralizing Knowledge