Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barak Rotblat is active.

Publication


Featured researches published by Barak Rotblat.


Molecular and Cellular Biology | 2005

Individual palmitoyl residues serve distinct roles in H-ras trafficking, microlocalization, and signaling.

Sandrine Roy; Sarah J. Plowman; Barak Rotblat; Ian A. Prior; Cornelia Muncke; Sarah Grainger; Robert G. Parton; Yoav I. Henis; John F. Hancock

ABSTRACT H-ras is anchored to the plasma membrane by two palmitoylated cysteine residues, Cys181 and Cys184, operating in concert with a C-terminal S-farnesyl cysteine carboxymethylester. Here we demonstrate that the two palmitates serve distinct biological roles. Monopalmitoylation of Cys181 is required and sufficient for efficient trafficking of H-ras to the plasma membrane, whereas monopalmitoylation of Cys184 does not permit efficient trafficking beyond the Golgi apparatus. However, once at the plasma membrane, monopalmitoylation of Cys184 supports correct GTP-regulated lateral segregation of H-ras between cholesterol-dependent and cholesterol-independent microdomains. In contrast, monopalmitoylation of Cys181 dramatically reverses H-ras lateral segregation, driving GTP-loaded H-ras into cholesterol-dependent microdomains. Intriguingly, the Cys181 monopalmitoylated H-ras anchor emulates the GTP-regulated microdomain interactions of N-ras. These results identify N-ras as the Ras isoform that normally signals from lipid rafts but also reveal that spacing between palmitate and prenyl groups influences anchor interactions with the lipid bilayer. This concept is further supported by the different plasma membrane affinities of the monopalmitoylated anchors: Cys181-palmitate is equivalent to the dually palmitoylated wild-type anchor, whereas Cys184-palmitate is weaker. Thus, membrane affinity of a palmitoylated anchor is a function both of the hydrophobicity of the lipid moieties and their spatial organization. Finally we show that the plasma membrane affinity of monopalmitoylated anchors is absolutely dependent on cholesterol, identifying a new role for cholesterol in promoting interactions with the raft and nonraft plasma membrane.


Cancer Research | 2004

Galectin-1(L11A) Predicted from a Computed Galectin-1 Farnesyl-Binding Pocket Selectively Inhibits Ras-GTP

Barak Rotblat; Hagit Niv; Sabine André; Herbert Kaltner; Hans-Joachim Gabius

Ras biological activity necessitates membrane anchorage that depends on the Ras farnesyl moiety and is strengthened by Ras/galectin-1 interactions. We identified a hydrophobic pocket in galectin-1, analogous to the Cdc42 geranylgeranyl-binding cavity in RhoGDI, possessing homologous isoprenoid-binding residues, including the critical L11, whose RhoGDI L77 homologue changes dramatically on Cdc42 binding. By substituting L11A, we obtained a dominant interfering galectin-1 that possessed normal carbohydrate-binding capacity but inhibited H-Ras GTP-loading and extracellular signal-regulated kinase activation, dislodged H-Ras(G12V) from the cell membrane, and attenuated H-Ras(G12V) fibroblast transformation and PC12-cell neurite outgrowth. Thus, independently of carbohydrate binding, galectin-1 cooperates with Ras, whereas galectin-1(L11A) inhibits it.


Molecular and Cellular Biology | 2004

Three separable domains regulate GTP-dependent association of H-ras with the plasma membrane

Barak Rotblat; Ian A. Prior; Cornelia Muncke; Robert G. Parton; Yoav I. Henis; John F. Hancock

ABSTRACT The microlocalization of Ras proteins to different microdomains of the plasma membrane is critical for signaling specificity. Here we examine the complex membrane interactions of H-ras with a combination of FRAP on live cells to measure membrane affinity and electron microscopy of intact plasma membrane sheets to spatially map microdomains. We show that three separable forces operate on H-ras at the plasma membrane. The lipid anchor, comprising a processed CAAX motif and two palmitic acid residues, generates one attractive force that provides a high-affinity interaction with lipid rafts. The adjacent hypervariable linker domain provides a second attractive force but for nonraft plasma membrane microdomains. Operating against the attractive interaction of the lipid anchor for lipid rafts is a repulsive force generated by the N-terminal catalytic domain that increases when H-ras is GTP loaded. These observations lead directly to a novel mechanism that explains how H-ras lateral segregation is regulated by activation state: GTP loading decreases H-ras affinity for lipid rafts and allows the hypervariable linker domain to target to nonraft microdomains, the primary site of H-ras signaling.


Molecular Biology of the Cell | 2008

Galectin-1 is a novel structural component and a major regulator of h-ras nanoclusters.

Liron Belanis; Sarah J. Plowman; Barak Rotblat; John F. Hancock

The organization of Ras proteins into nanoclusters on the inner plasma membrane is essential for Ras signal transduction, but the mechanisms that drive nanoclustering are unknown. Here we show that epidermal growth factor receptor activation stimulates the formation of H-Ras.GTP-Galectin-1 (Gal-1) complexes on the plasma membrane that are then assembled into transient nanoclusters. Gal-1 is therefore an integral structural component of the H-Ras-signaling nanocluster. Increasing Gal-1 levels increases the stability of H-Ras nanoclusters, leading to enhanced effector recruitment and signal output. Elements in the H-Ras C-terminal hypervariable region and an activated G-domain are required for H-Ras-Gal-1 interaction. Palmitoylation is not required for H-Ras-Gal-1 complex formation, but is required to anchor H-Ras-Gal-1 complexes to the plasma membrane. Our data suggest a mechanism for H-Ras nanoclustering that involves a dual role for Gal-1 as a critical scaffolding protein and a molecular chaperone that contributes to H-Ras trafficking by returning depalmitoylated H-Ras to the Golgi complex for repalmitoylation.


Cancer Research | 2008

K-Ras nanoclustering is subverted by overexpression of the scaffold protein galectin-3

Ruby Shalom-Feuerstein; Sarah J. Plowman; Barak Rotblat; Nicholas Ariotti; Tianhai Tian; John F. Hancock

The spatial organization of K-Ras proteins into nanoclusters on the plasma membrane is essential for high-fidelity signal transduction. The mechanism underlying K-Ras nanoclustering is unknown. We show here that K-Ras.GTP recruits Galectin-3 (Gal-3) from the cytosol to the plasma membrane where it becomes an integral nanocluster component. Importantly, we show that the cytosolic level of Gal-3 determines the magnitude of K-Ras.GTP nanoclustering and signal output. The beta-sheet layers of the Gal-3 carbohydrate recognition domain contain a hydrophobic pocket that may accommodate the farnesyl group of K-Ras. V125A substitution within this hydrophobic pocket yields a dominant negative Gal-3(V125A) mutant that inhibits K-Ras activity. Gal-3(V125A) interaction with K-Ras.GTP reduces K-Ras.GTP nanocluster formation, which abrogates signal output from the Raf/mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK; MEK) pathway. Gal-3(V125A) negatively regulates cell growth and reduces cellular transformation. Thus, regulation of K-Ras nanocluster formation and signal output by Gal-3 critically depends on the integrity of the Gal-3 hydrophobic pocket. These results show that Gal-3 overexpression in breast cancer cells, which increases K-Ras signal output, represents oncogenic subversion of plasma membrane nanostructure.


Cellular and Molecular Neurobiology | 2006

Spatiotemporal Organization of Ras Signaling: Rasosomes and the Galectin Switch

Uri Ashery; Ofer Yizhar; Barak Rotblat; Galit Elad-Sfadia; Batya Barkan; Roni Haklai

Summary1. Ras signaling and oncogenesis depend on the dynamic interplay of Ras with distinctive plasma membrane (PM) microdomains and various intracellular compartments. Such interaction is dictated by individual elements in the carboxy-terminal domain of the Ras proteins, including a farnesyl isoprenoid group, sequences in the hypervariable region (hvr)-linker, and palmitoyl groups in H/N-Ras isoforms.2. The farnesyl group acts as a specific recognition unit that interacts with prenyl-binding pockets in galectin-1 (Gal-1), galectin-3 (Gal-3), and cGMP phosphodiesterase δ. This interaction appears to contribute to the prolongation of Ras signals in the PM, the determination of Ras effector usage, and perhaps also the transport of cytoplasmic Ras. Gal-1 promotes H-Ras signaling to Raf at the expense of phosphoinositide 3-kinase (PI3-K) and Ral guanine nucleotide exchange factor (RalGEF), while galectin-3 promotes K-Ras signaling to both Raf and PI3-K.3. The hvr-linker and the palmitates of H-Ras and N-Ras determine the micro- and macro-localizations of these proteins in the PM and in the Golgi, as well as in ‘rasosomes’, randomly moving nanoparticles that carry palmitoylated Ras proteins and their signal through the cytoplasm.4. The dynamic compartmentalization of Ras proteins contributes to the spatial organization of Ras signaling, promotes redistribution of Ras, and provides an additional level of selectivity to the signal output of this regulatory GTPase.


Cell Death and Disease | 2014

High throughput screening for inhibitors of the HECT ubiquitin E3 ligase ITCH identifies antidepressant drugs as regulators of autophagy

Mario Rossi; Barak Rotblat; K. Ansell; Ivano Amelio; Michele Caraglia; Gabriella Misso; Francesca Bernassola; Claudio N. Cavasotto; Richard A. Knight; Aaron Ciechanover; Gerry Melino

Inhibition of distinct ubiquitin E3 ligases might represent a powerful therapeutic tool. ITCH is a HECT domain-containing E3 ligase that promotes the ubiquitylation and degradation of several proteins, including p73, p63, c-Jun, JunB, Notch and c-FLIP, thus affecting cell fate. Accordingly, ITCH depletion potentiates the effect of chemotherapeutic drugs, revealing ITCH as a potential pharmacological target in cancer therapy. Using high throughput screening of ITCH auto-ubiquitylation, we identified several putative ITCH inhibitors, one of which is clomipramine—a clinically useful antidepressant drug. Previously, we have shown that clomipramine inhibits autophagy by blocking autophagolysosomal fluxes and thus could potentiate chemotherapy in vitro. Here, we found that clomipramine specifically blocks ITCH auto-ubiquitylation, as well as p73 ubiquitylation. By screening structural homologs of clomipramine, we identified several ITCH inhibitors and putative molecular moieties that are essential for ITCH inhibition. Treating a panel of breast, prostate and bladder cancer cell lines with clomipramine, or its homologs, we found that they reduce cancer cell growth, and synergize with gemcitabine or mitomycin in killing cancer cells by blocking autophagy. We also discuss a potential mechanism of inhibition. Together, our study (i) demonstrates the feasibility of using high throughput screening to identify E3 ligase inhibitors and (ii) provides insight into how clomipramine and its structural homologs might interfere with ITCH and other HECT E3 ligase catalytic activity in (iii) potentiating chemotherapy by regulating autophagic fluxes. These results may have direct clinical applications.


Nature Communications | 2013

Hace1 controls ROS generation of vertebrate Rac1-dependent NADPH oxidase complexes

Mads Daugaard; Roberto Nitsch; Babak Razaghi; Lindsay McDonald; Ameer Jarrar; Stéphanie Torrino; Sonia Castillo-Lluva; Barak Rotblat; Liheng Li; Angeliki Malliri; Emmanuel Lemichez; Amel Mettouchi; Jason N. Berman; Josef M. Penninger; Poul H. Sorensen

The Hace1-HECT E3 ligase is a tumor suppressor that ubiquitylates the activated GTP-bound form of the Rho family GTPase Rac1, leading to Rac1 proteasomal degradation. Here we show that, in vertebrates, Hace1 targets Rac1 for degradation when Rac1 is localized to the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase holoenzyme. This event blocks de novo reactive oxygen species generation by Rac1-dependent NADPH oxidases, and thereby confers cellular protection from reactive oxygen species-induced DNA damage and cyclin D1-driven hyper-proliferation. Genetic inactivation of Hace1 in mice or zebrafish, as well as Hace1 loss in human tumor cell lines or primary murine or human tumors, leads to chronic NADPH oxidase-dependent reactive oxygen species elevation, DNA damage responses and enhanced cyclin D1 expression. Our data reveal a conserved ubiquitin-dependent molecular mechanism that controls the activity of Rac1-dependent NADPH oxidase complexes, and thus constitutes the first known example of a tumor suppressor protein that directly regulates reactive oxygen species production in vertebrates.


Biochimica et Biophysica Acta | 2015

Stress-mediated translational control in cancer cells

Gabriel Leprivier; Barak Rotblat; Debjit Khan; Eric Jan; Poul H. Sorensen

Tumor cells are continually subjected to diverse stress conditions of the tumor microenvironment, including hypoxia, nutrient deprivation, and oxidative or genotoxic stress. Tumor cells must evolve adaptive mechanisms to survive these conditions to ultimately drive tumor progression. Tight control of mRNA translation is critical for this response and the adaptation of tumor cells to such stress forms. This proceeds though a translational reprogramming process which restrains overall translation activity to preserve energy and nutrients, but which also stimulates the selective synthesis of major stress adaptor proteins. Here we present the different regulatory signaling pathways which coordinate mRNA translation in the response to different stress forms, including those regulating eIF2α, mTORC1 and eEF2K, and we explain how tumor cells hijack these pathways for survival under stress. Finally, mechanisms for selective mRNA translation under stress, including the utilization of upstream open reading frames (uORFs) and internal ribosome entry sites (IRESes) are discussed in the context of cell stress. This article is part of a Special Issue entitled: Translation and Cancer.


Traffic | 2006

Nonconventional Trafficking of Ras Associated with Ras Signal Organization

Uri Ashery; Ofer Yizhar; Barak Rotblat

Ras signaling to its downstream effectors appears to include combinations of extracellular‐signal‐regulated Ras activation at the plasma membrane (PM) and endomembranes, dynamic lateral segregation in the PM, and translocation of Ras from the PM to intracellular compartments. These processes are governed by the C‐terminal polybasic farnesyl domain in K‐Ras 4B and by the cysteine‐palmitoylated C‐terminal farnesyl domains in H‐Ras and N‐Ras. K‐Ras 4B has no palmitoylated cysteines. Depalmitoylation/repalmitoylation of H‐/N‐Ras proteins promotes their cellular redistribution and signaling by mechanisms as yet unknown, possibly involving chaperones. Palmitoylation of H‐/N‐Ras also promotes their association with ‘rasosomes’, randomly diffusing nanoparticles that apparently provide a means by which multiple copies of activated Ras and its signal can spread rapidly. Ubiquitination of H‐Ras evidently targets it to the endosomes. The polybasic farnesyl domain of K‐Ras 4B was shown to act as a target for Ca++/calmodulin, which sequesters the active protein from the PM, thereby facilitating its trafficking to Golgi apparatus and early endosomes. Protein kinase C‐dependent phosphorylation of S181 in K‐Ras 4B was shown to provide a regulated farnesyl‐electrostatic switch on K‐Ras 4B, which promotes its translocation to the mitochondria. All these translocation events are characterized by nonconventional trafficking of the farnesyl‐modified Ras proteins and seem to govern the selectivity and probably also the robustness of the Ras signal. In this review, we discuss the various modifications and interactions of the farnesylated C‐terminus, the trafficking of Ras proteins in the PM and between the PM and the endomembranes, and the relevance of the subcellular localization of Ras for Ras function.

Collaboration


Dive into the Barak Rotblat's collaboration.

Top Co-Authors

Avatar

Gabriel Leprivier

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Poul H. Sorensen

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Gerry Melino

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

John F. Hancock

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adi Barokas

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge