Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barakat S.M. Mahmoud is active.

Publication


Featured researches published by Barakat S.M. Mahmoud.


Food Microbiology | 2010

Inactivation of Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica and Shigella flexneri on spinach leaves by X-ray

Barakat S.M. Mahmoud; Gary R. Bachman; Richard H. Linton

Several recent foodborne disease outbreaks associated with leafy green vegetables, including spinach, have been reported. X-ray is a non-thermal technology that has shown promise for reducing pathogenic and spoilage bacteria on spinach leaves. Inactivation of inoculated Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica and Shigella flexneri on spinach leaves using X-ray at different doses (0.1, 0.2, 0.3, 0.5, 0.75, 1.0, 1.5 and 2.0 kGy) was studied. The effect of X-ray on color quality and microflora counts (mesophilic counts, psychrotrophic counts and yeast and mold counts) of untreated and treated spinach was also determined. A mixture of three strains of each tested organism was spot inoculated (100 microl) onto the surface of spinach leaves (approximately 8-9 log ml(-1)), separately, and air-dried, followed by treatment with X-ray at 22 degrees C and 55-60% relative humidity. Surviving bacterial populations on spinach leaves were evaluated using a nonselective medium (tryptic soy agar) with a selective medium overlay for each bacteria; E. coli O157:H7 (CT-SMAC agar), L. monocytogenes (MOA), and S. enterica and S. flexneri (XLD). More than a 5 log CFU reduction/leaf was achieved with 2.0 kGy X-ray for all tested pathogens. Furthermore, treatment with X-ray significantly reduced the initial inherent microflora on spinach leaves and inherent levels were significantly (p < 0.05) lower than the control sample throughout refrigerated storage for 30 days. Treatment with X-ray did not significantly affect the color of spinach leaves, even when the maximum dose (2.0 kGy) was used.


Food Microbiology | 2010

The effects of X-ray radiation on Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica and Shigella flexneri inoculated on whole Roma tomatoes.

Barakat S.M. Mahmoud

In the last two decades several foodborne disease outbreaks associated with produce were reported. Tomatoes, in particular, have been associated with several multi-state Salmonella outbreaks. Inactivation of inoculated Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica and Shigella flexneri on whole Roma tomato surfaces by X-ray at 0.1, 0.5, 0.75, 1.0, and 1.5 kGy was studied. The main purpose of this study was to achieve a 5 log reduction in consistent with the recommendations of the National Advisory Committee on Microbiological Criteria for Foods. Moreover, the effect of X-ray on inherent microflora (mesophilic counts, psychrotrophic counts and yeast and mold counts) of untreated and treated Roma tomatoes, during storage at ambient temperature (22°C) for 20 days was also determined. Mixtures of three or two strains of each tested organism was spot inoculated (100 μl) onto the surface of Roma tomatoes (approximately 7-9 log per tomato), separately, and air-dried, followed by treatment with X-ray doses at 22°C and 55-60% relative humidity. Surviving bacterial populations on tomato surfaces were evaluated using a nonselective medium (tryptic soy agar) with a selective medium overlay for each bacteria; E. coli O157:H7 (CT-SMAC agar), L. monocytogenes (MOA), and S. enterica and S. flexneri (XLD). Treatment with X-ray significantly reduced the population of the tested pathogens on whole Roma tomato surfaces, compared with the control. Approximately 4.2, 2.3, 3.7 and 3.6 log CFU reduction of E. coli O157:H7, L. monocytogenes, S. enterica and S. flexneri per tomato were achieved by treatment with 0.75 kGy X-ray, respectively. More than a 5 log CFU reduction per tomato was achieved at 1.0 or 1.5 kGy X-ray for all tested pathogens. Furthermore, treatment with X-ray significantly reduced the inherent microflora on Roma tomatoes. Inherent levels were significantly (p<0.05) lower than the control sample throughout storage for 20 days.


Carbohydrate Polymers | 2015

Chemical isolation and characterization of different cellulose nanofibers from cotton stalks

Bhawna Soni; El Barbary Hassan; Barakat S.M. Mahmoud

Recently, cellulose nanofibers (CNFs) have received wide attention in green nanomaterial technologies. Production of CNFs from agricultural residues has many economic and environmental advantages. In this study, four different CNFs were prepared from cotton stalks by different chemical treatments followed by ultrasonication. CNFs were prepared from untreated bleached pulp, sulfuric acid hydrolysis, and TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl) oxy radical]-mediated oxidation process. Physical and chemical properties of the prepared CNFs such as morphological (FE-SEM, AFM), structural (FTIR), and thermal gravimetric analysis (TGA) were investigated. Characterization results clearly showed that the method of preparation results in a significant difference in the structure, thermal stability, shape and dimensions of the produced CNFs. TEMPO-mediated oxidation produced brighter and higher yields (>90%) of CNFs compared to other methods. FE-SEM and AFM analysis clearly indicated that, TEMPO-mediated oxidation produced uniform nano-sized fibers with a very small diameter (3-15 nm width) and very small length (10-100 nm). This was the first time uniform and very small nanofibers were produced.


Letters in Applied Microbiology | 2009

Inactivation of Vibrio parahaemolyticus in pure culture, whole live and half shell oysters (Crassostrea virginica) by X-ray.

Barakat S.M. Mahmoud; D.D. Burrage

Aims:  To study the inactivation effect of different doses of X‐ray on Vibrio parahaemolyticus in pure culture, inoculated whole live and half shell oysters and to evaluate the efficacy of X‐ray doses on reduction of inherent microflora on oysters.


International Journal of Food Microbiology | 2009

Reduction of Vibrio vulnificus in pure culture, half shell and whole shell oysters (Crassostrea virginica) by X-ray.

Barakat S.M. Mahmoud

The purpose of this investigation was to study the inactivation effect of X-ray treatments on inoculated Vibrio vulnificus in pure culture, half shell and whole shell oysters to achieve a 5.0 log reduction, which is recommended by the Interstate Shellfish Sanitation Conference and the Food and Drug Administration. A mixed culture of three V. vulnificus strains was used to prepare the pure culture and inoculated oysters. The pure culture and inoculated oysters were treated with 0.0, 0.1, 0.5, 0.75, 1.0, 1.5, 2.0, and 3.0 kGy X-ray at 22 degrees C and 50-60% relative humidity. Surviving bacterial populations in the pure culture and inoculated oysters were enumerated using overlay-plating method [with a non-selective media (trypticase soy agar) followed by a selective medium (Modified Cellobiose-Polymyxin B-Colistin) and most probable number (MPN) method. Greater than a 6-log reduction of V. vulnificus was achieved with 0.75, 1.0 3.0 kGy X-ray in pure culture, half shell and whole shell oysters, respectively. Treatment with 0.75 kGy X-ray significantly (p<0.05) reduced the inherent microorganisms in half shell oysters, to less than the detectable limit (<1 log CFU/g). The maximum dose (3.0 kGy) of X-ray treatment did not affect the survivability of live oysters.


Food Microbiology | 2009

Effect of X-ray treatments on inoculated Escherichia coli O157: H7, Salmonella enterica, Shigella flexneri and Vibrio parahaemolyticus in ready-to-eat shrimp.

Barakat S.M. Mahmoud

This study was conducted to evaluate the inactivation effect of X-ray treatments on Escherichia coli O157: H7, Salmonella enteric (S. enterica), Shigella flexneri (S. flexneri) and Vibrio parahaemolyticus (V. parahaemolyticus) artificially inoculated in ready-to-eat (RTE) shrimp. A mixed culture of three strains of each tested pathogen was used to inoculate RTE shrimp. The shrimp samples were inoculated individually with selected pathogenic bacteria then aseptically placed in sterile plastic cups and air-dried at 22 degrees C for 30 min (to allow bacterial attachment) in the biosafety cabinet prior to X-ray treatments. The inoculated shrimp samples were then placed in sterilized bags and treated with 0.1, 0.2, 0.3, 0.5, 0.75, 1.0, 2.0, 3.0 and 4.0 kGy X-ray at ambient temperature (22 degrees C and 60% relative humidity). Surviving bacterial populations were evaluated using a non-selective medium (TSA) with the appropriate selective medium overlay for each bacterium; CT-SMAC agar for E. coli O157: H7, XLD for S. enterica and S. flexneri and TCBS for V. parahaemolyticus. More than a 6 log CFU reduction of E. coli O157: H7, S. enterica, S. flexneri and V. parahaemolyticus was achieved with 2.0, 4.0, 3.0 and 3.0 kGy X-ray, respectively. Furthermore, treatment with 0.75 kGy X-ray significantly reduced the initial microflora on RTE shrimp samples from 3.8 +/- 0.2 log CFU g(-1) to less than detectable limit (<1.0 log CFU g(-1)).


Food Microbiology | 2010

Effects of X-ray radiation on Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica and Shigella flexneri inoculated on shredded iceberg lettuce☆

Barakat S.M. Mahmoud

The main goal of this investigation was to study the efficacy of X-ray doses (0.1, 0.2, 0.3, 0.5, 0.75, 1.0, 1.5 and 2.0 kGy) on inoculated Escherichia coli O157: H7, Listeria monocytogenes, Salmonella enterica and Shigella flexneri on shredded iceberg lettuce. The second goal was to study the effect of X-ray on the inherent microflora counts and visual color of shredded iceberg lettuce during storage at 4 degrees C for 30 days. Treatment with 1.0 kGy X-ray significantly reduced the population of E. coli O157: H7, L. monocytogenes, Salmonella enterica and S. flexneri on shredded iceberg lettuce by 4.4, 4.1, 4.8 and 4.4-log CFU 5 cm(-2), respectively. Furthermore, more than a 5 log CFU reduction of E. coli O157: H7, L. monocytogenes, S. enterica and S. flexneri was achieved with 2.0 kGy X-ray. Treatment with X-ray reduced the initial microflora on iceberg lettuce and kept them significantly (p < 0.05) lower than the control during storage at 4 degrees C and 90% RH for 30 days. Treatment with X-ray did not significantly (p > 0.05) change the green color of iceberg lettuce leaves. Treatment with X-ray significantly reduced selected pathogens and inherent microorganisms on shredded iceberg lettuce leaves, which could be a good alternative to other technologies for produce (lettuce) industry.


Foodborne Pathogens and Disease | 2010

Inactivation of Salmonella enterica and Listeria monocytogenes Inoculated on Hydroponic Tomatoes Using Chlorine Dioxide Gas

Arpan Bhagat; Barakat S.M. Mahmoud; Richard H. Linton

The main objective of this study was to determine survivability of a cocktail of three strains of Salmonella enterica (Montevideo, Javiana, and Baildon) and two strains of Listeria monocytogenes (LCDC 81-861 and F4244) on hydroponic tomatoes after treatment with chlorine dioxide (ClO(2)) gas. An initial concentration of 8-9 log cfu/mL of Salmonella and Listeria cocktails was inoculated individually, in separate experiments, on tomato skin to obtain a population of 7-8 log cfu/cm(2) after drying of the inoculums on the tomato skin. The aim was to achieve a 5 log reduction consistent with the recommendations of the National Advisory Committee on Microbiological Criteria for Foods. The tomato skins were treated with 0.1, 0.3, and 0.5 mg/L ClO(2) gas for 12 min at 22 degrees C and at the relative humidity of 90%. Untreated skin samples were processed under the same conditions. ClO(2)-gas-treated and untreated samples were recovered by an overlay method. The bottom layer contains tryptic soy agar, and the top layer consists of xylose-lysine-desoxycholate agar or modified Oxford antimicrobial supplement agar for Salmonella and Listeria, respectively. More than a 5 log reduction in Salmonella and Listeria was observed on the tomato skin surfaces after treatment with 0.5 mg/L ClO(2) gas for 12 min. Treatment with 0.5 mg/L ClO(2) gas for 12 min also delayed the growth of natural microflora on tomato surfaces and extended the shelf life of tomatoes by 7 days during storage at 22 degrees C, compared with the untreated control. These results revealed that ClO(2) gas is a promising antimicrobial technology for fresh tomato skin surfaces.


Carbohydrate Polymers | 2016

Transparent bionanocomposite films based on chitosan and TEMPO-oxidized cellulose nanofibers with enhanced mechanical and barrier properties

Bhawna Soni; El Barbary Hassan; M. Wes Schilling; Barakat S.M. Mahmoud

The development of biobased active films for use in food packaging is increasing due to low cost, environmental appeal, renewability and availability. The objective of this research was to develop an effective and complete green approach for the production of bionanocomposite films with enhanced mechanical and barrier properties. This was accomplished by incorporating TEMPO-oxidized cellulose nanofibers (2,2,6,6-tetramethylpiperidine-1-oxyl radical) into a chitosan matrix. An aqueous suspension of chitosan (100-75wt%), sorbitol (25wt%) and TEMPO-oxidized cellulose nanofibers (TEMPO-CNFs, 0-25wt%) were cast in an oven at 40°C for 2-4days. Films were preconditioned at 25°C and 50% RH for characterization. The surface morphology of the films was revealed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The thermal properties and crystal structure of the films were evaluated by thermogravimetric analysis (TGA-DTG) and X-ray diffraction (XRD). Incorporation of TEMPO-CNFs enhanced the mechanical strength of the films due to the high aspect ratio (3-20nm width, and 10-100nm length) of TEMPO-CNFs and strong interactions with the chitosan matrix. Oxygen and water vapor transmission rates for films that are prepared with chitosan and TEMPO-CNFs (15-25wt%) were significantly reduced. Furthermore, these bionanocomposite films had good thermal stability. Use of TEMPO-CNFs in this method makes it possible to produce bionanocomposite films that are flexible, transparent, and thus have potential in food packaging applications.


Poultry Science | 2013

Synergistic activity between lauric arginate and carvacrol in reducing Salmonella in ground turkey

Ademola Oladunjoye; Kamlesh A. Soni; Ramakrishna Nannapaneni; M. Wes Schilling; Juan L. Silva; Benjy Mikel; R. Hartford Bailey; Barakat S.M. Mahmoud; Chander Shekhar Sharma

In the present study, low concentrations of carvacrol (0.025 to 0.2%) and lauric arginate (LAE; 25 to 200 ppm) were tested at 4, 22, and 45°C in a broth model, and higher concentrations of carvacrol (0.1 to 5%) and LAE (200 to 5,000 ppm) were tested individually and in combination at 4°C in 3 different ground turkey samples (with 15, 7, and 1% fat content) for their effectiveness against a 3-strain mixture of Salmonella. A low concentration of 25 ppm of LAE or 0.025% carvacrol had no effect on Salmonella in a broth model, but their mixture showed a synergistic action by reducing 6 log cfu/mL Salmonella counts to a nondetectable level within 30 min of exposure. The US Food and Drug Administration-recommended 200 ppm of LAE was not sufficient for Salmonella reductions in ground turkey when applied internally. High concentrations of 2,000 to 5,000 ppm of LAE or 1 to 2% carvacrol were needed to reduce Salmonella counts by 2 to 5 log cfu/g in ground turkey by internal application. No specific relationship existed between fat content and LAE or carvacrol concentrations for Salmonella reductions. For example, 2,000 ppm of LAE could reduce Salmonella counts by 4 log cfu/g in 1% fat-containing turkey samples but very similar ~1.5 log cfu/g reductions in both 7 and 15% fat-containing ground turkey samples. For the total microbial load, about 2,000 ppm of LAE or 2% of carvacrol treatments were needed to achieve 2 to 3 log (P ≤ 0.05) cfu/g reductions in different turkey samples. A mixture of 1% carvacrol and 2,000 ppm of LAE exhibited a synergistic action in ground turkey containing 7% fat by reducing the Salmonella counts by 4 log cfu/g, which was not found with individual antimicrobial treatments.

Collaboration


Dive into the Barakat S.M. Mahmoud's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sam K. C. Chang

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

Randy Coker

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

Yuwei Wu

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

Bhawna Soni

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

El Barbary Hassan

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

Kamlesh A. Soni

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge