Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barbara A. Leggett is active.

Publication


Featured researches published by Barbara A. Leggett.


Journal of Clinical Oncology | 2002

Immunohistochemistry Versus Microsatellite Instability Testing in Phenotyping Colorectal Tumors

Noralane M. Lindor; Lawrence J Burgart; Olga Leontovich; Richard M. Goldberg; Julie M. Cunningham; Daniel J. Sargent; Catherine Walsh-Vockley; Gloria M. Petersen; Michael D. Walsh; Barbara A. Leggett; Joanne Young; Melissa A. Barker; Jeremy R. Jass; John L. Hopper; Steve Gallinger; Bharati Bapat; Mark Redston; Stephen N. Thibodeau

PURPOSE To compare microsatellite instability (MSI) testing with immunohistochemical (IHC) detection of hMLH1 and hMSH2 in colorectal cancer. PATIENTS AND METHODS Colorectal cancers from 1,144 patients were assessed for DNA mismatch repair deficiency by two methods: MSI testing and IHC detection of hMLH1 and hMSH2 gene products. High-frequency MSI (MSI-H) was defined as more than 30% instability of at least five markers; low-level MSI (MSI-L) was defined as 1% to 29% of loci unstable. RESULTS Of 1,144 tumors tested, 818 showed intact expression of hMLH1 and hMSH2. Of these, 680 were microsatellite stable (MSS), 27 were MSI-H, and 111 were MSI-L. In all, 228 tumors showed absence of hMLH1 expression and 98 showed absence of hMSH2 expression: all were MSI-H. CONCLUSION IHC in colorectal tumors for protein products hMLH1 and hMSH2 provides a rapid, cost-effective, sensitive (92.3%), and extremely specific (100%) method for screening for DNA mismatch repair defects. The predictive value of normal IHC for an MSS/MSI-L phenotype was 96.7%, and the predictive value of abnormal IHC was 100% for an MSI-H phenotype. Testing strategies must take into account acceptability of missing some cases of MSI-H tumors if only IHC is performed.


Gut | 1998

Morphology of sporadic colorectal cancer with DNA replication errors

Jeremy R. Jass; K. A. Do; Lisa A. Simms; H. Iino; Coral V. A. Wynter; S. P. Pillay; J. Searle; Graham L. Radford-Smith; Joanne Young; Barbara A. Leggett

Background—Up to 15% of colorectal cancers are characterised by DNA microsatellite instability (MIN), shown by the presence of DNA replication errors (RERs). Aims—To identify pathological features that are discriminating for colorectal cancer (CRC) showing extensive MIN. Subjects—A prospective series of 303 patients with CRC and no family history of either familial adenomatous polyposis or hereditary non-polyposis colorectal cancer. Methods—DNA was extracted from fresh tissue samples and the presence of MIN was studied at nine loci that included TGFβRII, IGFIIR, and BAX. The 61 cases showing RERs were compared with 63 RER negative cases with respect to a comprehensive set of clinical and pathological variables. Predictive utility of the variables was tested by decision tree analysis. Results—Twenty seven patients with CRC showed extensive RERs (three loci or more) (RER+) and 34 had limited RERs only (28 = one locus; 6 = two loci) (RER+/−), yielding a bimodal distribution. RER+ cancers differed from RER− and RER+/− cases. Tumour type (adenocarcinoma, mucinous carcinoma, and undifferentiated carcinoma) (p=0.001), tumour infiltrating lymphocytes (p=0.001), and anatomical site (p=0.001) were the most significant of the discriminating variables. Algorithms developed by decision tree analysis allowed cases to be assigned to RER+ versus RER− and +/− status with a global sensitivity of 81.5%, specificity of 96%, and overall accuracy of 93%. Conclusion—Pathological examination of CRC allows assignment of RER+ status; assignment is specific and relatively sensitive. Conversely RER− and RER+/− CRC are indistinguishable.


Journal of Clinical Pathology | 1999

DNA microsatellite instability in hyperplastic polyps, serrated adenomas, and mixed polyps: a mild mutator pathway for colorectal cancer?

H. Iino; Jeremy R. Jass; Lisa A. Simms; Joanne Young; Barbara A. Leggett; Youichi Ajioka; Hidenobu Watanabe

AIM: To investigate the distribution of DNA microsatellite instability (MSI) in a series of hyperplastic polyps, serrated adenomas, and mixed polyps of the colorectum. METHODS: DNA was extracted from samples of 73 colorectal polyps comprising tubular adenomas (23), hyperplastic polyps (21), serrated adenomas (17), and mixed polyps (12). The presence of MSI was investigated at six loci: MYCL, D2S123, F13B, BAT-40, BAT-26, and c-myb T22, using polymerase chain reaction based methodology. MSI cases were classified as MSI-Low (MSI-L) and MSI-High (MSI-H), based on the number of affected loci. RESULTS: The frequency of MSI increased in tubular adenomas (13%), hyperplastic polyps (29%), serrated adenomas (53%), and mixed polyps (83%) (Wilcoxon rank sum statistic, p < 0.001). Hyperplastic epithelium was present in nine of 12 mixed polyps and showed MSI in eight of these. MSI was mostly MSI-L. MSI-H occurred in two serrated adenomas and three mixed polyps. Clonal relations were demonstrated between hyperplastic and dysplastic epithelium in four of eight informative mixed polyps. CONCLUSIONS: The findings support the view that hyperplastic polyps may be fundamentally neoplastic rather than hyperplastic. A proportion of hyperplastic polyps may serve as a precursor of a subset (10%) of colorectal cancers showing the MSI-L phenotype, albeit through the intermediate step of serrated dysplasia. This represents a novel and distinct morphogenetic pathway for colorectal cancer.


American Journal of Pathology | 2001

Features of Colorectal Cancers with High-Level Microsatellite Instability Occurring in Familial and Sporadic Settings : Parallel Pathways of Tumorigenesis

Joanne Young; Lisa A. Simms; Kelli G. Biden; Coral V. A. Wynter; Vicki Whitehall; Rozemary Karamatic; Jill George; Jack Goldblatt; Ian Walpole; Sally-Anne Robin; Michael M. Borten; Russell Stitz; Jeffrey Searle; Diane McKeone; Leigh Fraser; David R. Purdie; Kay Podger; Rachael Price; Ron Buttenshaw; Michael D. Walsh; Melissa A. Barker; Barbara A. Leggett; Jeremy R. Jass

High-level microsatellite instability (MSI-H) is demonstrated in 10 to 15% of sporadic colorectal cancers and in most cancers presenting in the inherited condition hereditary nonpolyposis colorectal cancer (HNPCC). Distinction between these categories of MSI-H cancer is of clinical importance and the aim of this study was to assess clinical, pathological, and molecular features that might be discriminatory. One hundred and twelve MSI-H colorectal cancers from families fulfilling the Bethesda criteria were compared with 57 sporadic MSI-H colorectal cancers. HNPCC cancers presented at a lower age (P < 0.001) with no sporadic MSI-H cancer being diagnosed before the age of 57 years. MSI was less extensive in HNPCC cancers with 72% microsatellite markers showing band shifts compared with 87% in sporadic tumors (P < 0.001). Absent immunostaining for hMSH2 was only found in HNPCC tumors. Methylation of hMLH1 was observed in 87% of sporadic cancers but also in 55% of HNPCC tumors that showed loss of expression of hMLH1 (P = 0.02). HNPCC cancers were more frequently characterized by aberrant beta-catenin immunostaining as evidenced by nuclear positivity (P < 0.001). Aberrant p53 immunostaining was infrequent in both groups. There were no differences with respect to 5q loss of heterozygosity or codon 12 K-ras mutation, which were infrequent in both groups. Sporadic MSI-H cancers were more frequently heterogeneous (P < 0.001), poorly differentiated (P = 0.02), mucinous (P = 0.02), and proximally located (P = 0.04) than HNPCC tumors. In sporadic MSI-H cancers, contiguous adenomas were likely to be serrated whereas traditional adenomas were dominant in HNPCC. Lymphocytic infiltration was more pronounced in HNPCC but the results did not reach statistical significance. Overall, HNPCC cancers were more like common colorectal cancer in terms of morphology and expression of beta-catenin whereas sporadic MSI-H cancers displayed features consistent with a different morphogenesis. No individual feature was discriminatory for all HNPCC cancers. However, a model based on four features was able to classify 94.5% of tumors as sporadic or HNPCC. The finding of multiple differences between sporadic and familial MSI-H colorectal cancer with respect to both genotype and phenotype is consistent with tumorigenesis through parallel evolutionary pathways and emphasizes the importance of studying the two groups separately.


Gut | 2000

Neoplastic progression occurs through mutator pathways in hyperplastic polyposis of the colorectum

Jeremy R. Jass; H. Iino; A. Ruszkiewicz; D. Painter; M. J. Solomon; D. J. Koorey; D. Cohn; K. L. Furlong; Michael D. Walsh; J. Palazzo; T. B. Edmonston; R. Fishel; Joanne Young; Barbara A. Leggett

AIM Colorectal cancer has been described in association with hyperplastic polyposis but the mechanism underlying this observation is unknown. The aim of this study was to characterise foci of dysplasia developing in the polyps of subjects with hyperplastic polyposis on the basis of DNA microsatellite status and expression of the DNA mismatch repair proteins hMLH1, hMSH2, and hMSH6. MATERIALS AND METHODS The material was derived from four patients with hyperplastic polyposis and between one and six synchronous colorectal cancers. Normal (four), hyperplastic (13), dysplastic (13), and malignant (11) samples were microdissected and a PCR based approach was used to identify mutations at 10 microsatellite loci, TGFβIIR, IGF2R, BAX, MSH3, and MSH6. Microsatellite instability-high (MSI-H) was diagnosed when 40% or more of the microsatellite loci showed mutational bandshifts. Serial sections were stained for hMLH1, hMSH2, and hMSH6. RESULTS DNA microsatellite instability was found in 1/13 (8%) hyperplastic samples, in 7/13 (54%) dysplastic foci, and in 8/11 (73%) cancers. None of the MSI-low (MSI-L) samples (one hyperplastic, three dysplastic, two cancers) showed loss of hMLH1 expression. All four MSI-H dysplastic foci and six MSI-H cancers showed loss of hMLH1 expression. Loss of hMLH1 in MSI-H but not in MSI-L lesions showing dysplasia or cancer was significant (p< 0.001, Fishers exact test). Loss of hMSH6 occurred in one MSI-H cancer and one MSS focus of dysplasia which also showed loss of hMLH1 staining. CONCLUSION Neoplastic changes in hyperplastic polyposis may occur within a hyperplastic polyp. Neoplasia may be driven by DNA instability that is present to a low (MSI-L) or high (MSI-H) degree. MSI-H but not MSI-L dysplastic foci are associated with loss of hMLH1 expression. At least two mutator pathways drive neoplasia in hyperplastic polyposis. The role of the hyperplastic polyp in the histogenesis of sporadic DNA microsatellite unstable colorectal cancer should be examined.


Journal of Clinical Pathology | 1999

Characterisation of a subtype of colorectal cancer combining features of the suppressor and mild mutator pathways

Jeremy R. Jass; Kelli G. Biden; Margaret C. Cummings; Lisa A. Simms; Michael D. Walsh; Estelle Schoch; Stephen J. Meltzer; Caroline Wright; Jeffrey Searle; Joanne Young; Barbara A. Leggett

BACKGROUND: 10% of sporadic colorectal cancers are characterised by a low level of microsatellite instability (MSI-L). These are not thought to differ substantially from microsatelite-stable (MSS) cancers, but MSI-L and MSS cancers are distinguished clinicopathologically and in their spectrum of genetic alterations from cancers showing high level microsatellite instability (MSI-H). AIMS: To study the distribution of molecular alterations in a series of colorectal cancers stratified by DNA microsatellite instability. METHODS: A subset of an unselected series of colorectal cancers was grouped by the finding of DNA MSI at 0 loci (MSS) (n = 51), 1-2 loci (MSI-L) (n = 38) and 3-6 loci (MSI-H) (n = 25). The frequency of K-ras mutation, loss of heterozygosity (LOH) at 5q, 17p and 18q, and patterns of p53 and beta catenin immunohistochemistry was determined in the three groups. RESULTS: MSI-H cancers had a low frequency of K-ras mutation (7%), LOH on chromosomes 5q (0%), 17p (0%) and 18q (12.5%), and a normal pattern of immunostaining for p53 and beta catenin. MSI-L cancers differed from MSS cancers in terms of a higher frequency of K-ras mutation (54% v 27%) (p = 0.01) and lower frequency of 5q LOH (23% v 48%) (p = 0.047). Whereas aberrant beta catenin expression and 5q LOH were concordant (both present or both absent) in 57% of MSS cancers, concordance was observed in only 20% of MSI-L cancers (p = 0.01). CONCLUSIONS: MSI-L colorectal cancers are distinct from both MSI-H and MSS cancers. This subset combines features of the suppressor and mutator pathways, may be more dependent on K-ras than on the APC gene in the early stages of neoplastic evolution, and a proportion may be related histogenetically to the serrated (hyperplastic) polyp.


American Journal of Human Genetics | 2001

Germline mutations in BMPR1A/ALK3 cause a subset of cases of juvenile polyposis syndrome and of cowden and bannayan-riley-ruvalcaba syndromes

Xiao-Ping Zhou; Kelly Woodford-Richens; Rainer Lehtonen; Keisuke Kurose; Micheala A. Aldred; Heather Hampel; Virpi Launonen; Sanno Virta; Robert Pilarski; Reijo Salovaara; Walter F. Bodmer; Beth A. Conrad; Malcolm G. Dunlop; Shirley Hodgson; Takeo Iwama; Heikki Järvinen; Ilmo Kellokumpu; Jin Cheon Kim; Barbara A. Leggett; David Markie; Jukka-Pekka Mecklin; Kay Neale; Robin K. S. Phillips; Juan Piris; Paul Rozen; Richard S. Houlston; Lauri A. Aaltonen; Ian Tomlinson; Charis Eng

Juvenile polyposis syndrome (JPS) is an inherited hamartomatous-polyposis syndrome with a risk for colon cancer. JPS is a clinical diagnosis by exclusion, and, before susceptibility genes were identified, JPS could easily be confused with other inherited hamartoma syndromes, such as Bannayan-Riley-Ruvalcaba syndrome (BRRS) and Cowden syndrome (CS). Germline mutations of MADH4 (SMAD4) have been described in a variable number of probands with JPS. A series of familial and isolated European probands without MADH4 mutations were analyzed for germline mutations in BMPR1A, a member of the transforming growth-factor beta-receptor superfamily, upstream from the SMAD pathway. Overall, 10 (38%) probands were found to have germline BMPR1A mutations, 8 of which resulted in truncated receptors and 2 of which resulted in missense alterations (C124R and C376Y). Almost all available component tumors from mutation-positive cases showed loss of heterozygosity (LOH) in the BMPR1A region, whereas those from mutation-negative cases did not. One proband with CS/CS-like phenotype was also found to have a germline BMPR1A missense mutation (A338D). Thus, germline BMPR1A mutations cause a significant proportion of cases of JPS and might define a small subset of cases of CS/BRRS with specific colonic phenotype.


Journal of the National Cancer Institute | 2010

Risks of Lynch Syndrome Cancers for MSH6 Mutation Carriers

Laura Baglietto; Noralane M. Lindor; James G. Dowty; Darren M. White; Anja Wagner; Encarna Gomez Garcia; Annette H. J. T. Vriends; Nicola Cartwright; Rebecca A. Barnetson; Susan M. Farrington; Albert Tenesa; Heather Hampel; Daniel D. Buchanan; Sven Arnold; Joanne Young; Michael D. Walsh; Jeremy R. Jass; Finlay Macrae; Yoland C. Antill; Ingrid Winship; Graham G. Giles; Jack Goldblatt; Susan Parry; Graeme Suthers; Barbara A. Leggett; Malinda L. Butz; Melyssa Aronson; Jenny N. Poynter; John A. Baron; Loic Le Marchand

BACKGROUND Germline mutations in MSH6 account for 10%-20% of Lynch syndrome colorectal cancers caused by hereditary DNA mismatch repair gene mutations. Because there have been only a few studies of mutation carriers, their cancer risks are uncertain. METHODS We identified 113 families of MSH6 mutation carriers from five countries that we ascertained through family cancer clinics and population-based cancer registries. Mutation status, sex, age, and histories of cancer, polypectomy, and hysterectomy were sought from 3104 of their relatives. Age-specific cumulative risks for carriers and hazard ratios (HRs) for cancer risks of carriers, compared with those of the general population of the same country, were estimated by use of a modified segregation analysis with appropriate conditioning depending on ascertainment. RESULTS For MSH6 mutation carriers, the estimated cumulative risks to ages 70 and 80 years, respectively, were as follows: for colorectal cancer, 22% (95% confidence interval [CI] = 14% to 32%) and 44% (95% CI = 28% to 62%) for men and 10% (95% CI = 5% to 17%) and 20% (95% CI = 11% to 35%) for women; for endometrial cancer, 26% (95% CI = 18% to 36%) and 44% (95% CI = 30% to 58%); and for any cancer associated with Lynch syndrome, 24% (95% CI = 16% to 37%) and 47% (95% CI = 32% to 66%) for men and 40% (95% CI = 32% to 52%) and 65% (95% CI = 53% to 78%) for women. Compared with incidence for the general population, MSH6 mutation carriers had an eightfold increased incidence of colorectal cancer (HR = 7.6, 95% CI = 5.4 to 10.8), which was independent of sex and age. Women who were MSH6 mutation carriers had a 26-fold increased incidence of endometrial cancer (HR = 25.5, 95% CI = 16.8 to 38.7) and a sixfold increased incidence of other cancers associated with Lynch syndrome (HR = 6.0, 95% CI = 3.4 to 10.7). CONCLUSION We have obtained precise and accurate estimates of both absolute and relative cancer risks for MSH6 mutation carriers.


Histopathology | 2013

The serrated pathway to colorectal carcinoma: current concepts and challenges

Mark Bettington; Neal I. Walker; Andrew D. Clouston; Ian Brown; Barbara A. Leggett; Vicki Whitehall

Approximately 30% of colorectal carcinomas develop via a serrated neoplasia pathway, named for the pattern of crypts in the precursor polyps. Molecular abnormalities consistently involve methylation of CpG islands [CpG island methylator phenotype (CIMP)] of low degree (CIMP‐L) or high degree (CIMP‐H), and activating mutations of the mitogen‐activated protein kinase pathway components BRAF or KRAS. Microsatellite instability (MSI) of a high level (MSI‐H) is often present, allowing for a molecular classification of serrated pathway carcinoma as: (i) BRAF mutant/CIMP‐H with either a) MSI‐H or b) microsatellite stable (MSS); and (ii) KRAS mutant/CIMP‐L/MSS. Precursor polyps include sessile serrated adenoma (SSA), characterized by proximal location, crypt architectural disturbance, and BRAF mutation. Microvesicular hyperplasic polyp (MVHP) probably precedes the development of SSA, and borderline lesions between MVHP and SSA occur. Cytological dysplasia in SSA portends advanced genetic abnormality and a high risk of progression to carcinoma. The traditional serrated adenoma has a predilection for the left colon, tubulovillous architecture, eosinophilic cytoplasm, and frequent KRAS mutation. Serrated morphology carcinoma is a new World Health Organization subtype with well‐differentiated, mucinous or trabecular patterns. It has frequent KRAS or BRAF mutations and a poor prognosis. This review provides an insight into the histology and molecular mechanisms driving these serrated pathway lesions.


Journal of Clinical Oncology | 2004

Colorectal Cancer With Mutation in BRAF, KRAS, and Wild-Type With Respect to Both Oncogenes Showing Different Patterns of DNA Methylation

Takeshi Nagasaka; Hiromi Sasamoto; Kenji Notohara; Harry M. Cullings; Masanori Takeda; Keigo Kimura; Takeshi Kambara; Donald G. MacPhee; Joanne Young; Barbara A. Leggett; Jeremy R. Jass; Noriaki Tanaka; Nagahide Matsubara

PURPOSE BRAF mutations are common in sporadic colorectal cancers (CRCs) with a DNA mismatch repair (MMR) deficiency that results from promoter methylation of hMLH1, whereas KRAS mutations are common in MMR proficient CRCs associated with promoter methylation of MGMT. The aim of this study was to further investigate the link between genetic alterations in the RAS/RAF/ERK pathway and an underlying epigenetic disorder. PATIENTS AND METHODS Activating mutations of BRAF and KRAS were identified and correlated with promoter methylation of 11 loci, including MINT1, MINT2, MINT31, CACNA1G, p16(INK4a), p14(ARF), COX2, DAPK, MGMT, and the two regions in hMLH1 in 468 CRCs and matched normal mucosa. RESULTS BRAF V599E mutations were identified in 21 (9%) of 234 CRCs, and KRAS mutations were identified in 72 (31%) of 234 CRCs. Mutations in BRAF and KRAS were never found in the same tumor. CRCs with BRAF mutations showed high-level promoter methylation in multiple loci, with a mean number of methylated loci of 7.2 (95% CI, 6.6 to 7.9) among 11 loci examined (P < .0001). Tumors with KRAS mutations showed low-level promoter methylation, and CRCs with neither mutation showed a weak association with promoter methylation, with an average number of methylated loci of 1.8 (95% CI, 1.5 to 2.1) and 1.0 (95% CI, 0.79 to 1.3), respectively. CONCLUSION In CRC, the methylation status of multiple promoters can be predicted through knowledge of BRAF and, to a lesser extent, KRAS activating mutations, indicating that these mutations are closely associated with different patterns of DNA hypermethylation. These changes may be important events in colorectal tumorigenesis.

Collaboration


Dive into the Barbara A. Leggett's collaboration.

Top Co-Authors

Avatar

Joanne Young

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Vicki Whitehall

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael D. Walsh

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Lisa A. Simms

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Diane McKeone

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ron Buttenshaw

Royal Brisbane and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Catherine E. Bond

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge