Barbara A. Moffatt
University of Waterloo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Barbara A. Moffatt.
Plant Physiology | 2006
Chui E. Wong; Yong Li; Aurelie Labbe; David Guevara; Paulo Nuin; Brett R Whitty; Claudia Diaz; G. Brian Golding; Gordon R. Gray; Elizabeth A. Weretilnyk; Marilyn Griffith; Barbara A. Moffatt
Thellungiella, an Arabidopsis (Arabidopsis thaliana)-related halophyte, is an emerging model species for studies designed to elucidate molecular mechanisms of abiotic stress tolerance. Using a cDNA microarray containing 3,628 unique sequences derived from previously described libraries of stress-induced cDNAs of the Yukon ecotype of Thellungiella salsuginea, we obtained transcript profiles of its response to cold, salinity, simulated drought, and rewatering after simulated drought. A total of 154 transcripts were differentially regulated under the conditions studied. Only six of these genes responded to all three stresses of drought, cold, and salinity, indicating a divergence among the end responses triggered by each of these stresses. Unlike in Arabidopsis, there were relatively few transcript changes in response to high salinity in this halophyte. Furthermore, the gene products represented among drought-responsive transcripts in Thellungiella associate a down-regulation of defense-related transcripts with exposure to water deficits. This antagonistic interaction between drought and biotic stress response may demonstrate Thellungiellas ability to respond precisely to environmental stresses, thereby conserving energy and resources and maximizing its survival potential. Intriguingly, changes of transcript abundance in response to cold implicate the involvement of jasmonic acid. While transcripts associated with photosynthetic processes were repressed by cold, physiological responses in plants developed at low temperature suggest a novel mechanism for photosynthetic acclimation. Taken together, our results provide useful starting points for more in-depth analyses of Thellungiellas extreme stress tolerance.
The Plant Cell | 1990
Sharon M. Regan; Barbara A. Moffatt
Microsporogenesis has been examined in wild-type Arabidopsis thaliana and the nuclear male-sterile mutant BM3 by cytochemical staining. The mutant lacks adenine phosphoribosyltransferase, an enzyme of the purine salvage pathway that converts adenine to AMP. Pollen development in the mutant began to diverge from wild type just after meiosis, as the tetrads of microspores were released from their callose walls. The first indication of abnormal pollen development in the mutant was a darker staining of the microspore wall due to an incomplete synthesis of the intine. Vacuole formation was delayed and irregular in the mutant, and the majority of the mutant microspores failed to undergo mitotic divisions. Enzyme activities of alcohol dehydrogenase and esterases decreased in the mutant soon after meiosis and were undetectable in mature pollen grains of the mutant. RNA accumulation was also diminished. These results are discussed in relation to the possible role(s) of adenine salvage in pollen development.
Plant Physiology | 2002
Barbara A. Moffatt; Yvonne Y. Stevens; Mike S. Allen; Jamie D. Snider; Luiz A. Pereira; Margarita I. Todorova; Peter S. Summers; Elizabeth A. Weretilnyk; Luke Martin-McCaffrey; Conrad Wagner
Adenosine (Ado) kinase (ADK; ATP:Ado 5′ phosphotransferase, EC 2.7.1.20) catalyzes the salvage synthesis of adenine monophosphate from Ado and ATP. In Arabidopsis, ADK is encoded by two cDNAs that share 89% nucleotide identity and are constitutively, yet differentially, expressed in leaves, stems, roots, and flowers. To investigate the role of ADK in plant metabolism, lines deficient in this enzyme activity have been created by sense and antisense expression of the ADK1 cDNA. The levels of ADK activity in these lines range from 7% to 70% of the activity found in wild-type Arabidopsis. Transgenic plants with 50% or more of the wild-type activity have a normal morphology. In contrast, plants with less than 10% ADK activity are small with rounded, wavy leaves and a compact, bushy appearance. Because of the lack of elongation of the primary shoot, the siliques extend in a cluster from the rosette. Fertility is decreased because the stamen filaments do not elongate normally; hypocotyl and root elongation are reduced also. The hydrolysis of S-adenosyl-l-homo-cysteine (SAH) produced from S-adenosyl-l-methionine (SAM)-dependent methylation reactions is a key source of Ado in plants. The lack of Ado salvage in the ADK-deficient lines leads to an increase in the SAH level and results in the inhibition of SAM-dependent transmethylation. There is a direct correlation between ADK activity and the level of methylesterified pectin in seed mucilage, as monitored by staining with ruthenium red, immunofluorescence labeling, or direct assay. These results indicate that Ado must be steadily removed by ADK to prevent feedback inhibition of SAH hydrolase and maintain SAM utilization and recycling.
Plant Molecular Biology | 2005
Chui E. Wong; Yong Li; B.R. Whitty; Claudia Díaz-Camino; S.R. Akhter; Jim Brandle; G.B. Golding; Elizabeth A. Weretilnyk; Barbara A. Moffatt; Marilyn Griffith
Thellungiella salsuginea (also known as T. halophila) is a close relative of Arabidopsis that is very tolerant of drought, freezing, and salinity and may be an appropriate model to identify the molecular mechanisms underlying abiotic stress tolerance in plants. We produced 6578 ESTs, which represented 3628 unique genes (unigenes), from cDNA libraries of cold-, drought-, and salinity-stressed plants from the Yukon ecotype of Thellungiella. Among the unigenes, 94.1% encoded products that were most similar in amino acid sequence to Arabidopsis and 1.5% had no match with a member of the family Brassicaceae. Unigenes from the cold library were more similar to Arabidopsis sequences than either drought- or salinity-induced sequences, indicating that latter responses may be more divergent between Thellungiella and Arabidopsis. Analysis of gene ontology using the best matched Arabidopsis locus showed that the Thellungiella unigenes represented all biological processes and all cellular components, with the highest number of sequences attributed to the chloroplast and mitochondria. Only 140 of the unigenes were found in all three abiotic stress cDNA libraries. Of these common unigenes, 70% have no known function, which demonstrates that Thellungiella can be a rich resource of genetic information about environmental responses. Some of the ESTs in this collection have low sequence similarity with those in Genbank suggesting that they may encode functions that may contribute to Thellungiella’s high degree of stress tolerance when compared with Arabidopsis. Moreover, Thellungiella is a closer relative of agriculturally important Brassica spp. than Arabidopsis, which may prove valuable in transferring information to crop improvement programs.
The Plant Cell | 2005
Pedro S.C.F. Rocha; Mazhar Sheikh; Rosalba Melchiorre; Mathilde Fagard; Stéphanie Boutet; Rebecca Loach; Barbara A. Moffatt; Conrad Wagner; Hervé Vaucheret; Ian J. Furner
Genes introduced into higher plant genomes can become silent (gene silencing) and/or cause silencing of homologous genes at unlinked sites (homology-dependent gene silencing or HDG silencing). Mutations of the HOMOLOGY-DEPENDENT GENE SILENCING1 (HOG1) locus relieve transcriptional gene silencing and methylation-dependent HDG silencing and result in genome-wide demethylation. The hog1 mutant plants also grow slowly and have low fertility and reduced seed germination. Three independent mutants of HOG1 were each found to have point mutations at the 3′ end of a gene coding for S-adenosyl-l-homocysteine (SAH) hydrolase, and hog1-1 plants show reduced SAH hydrolase activity. A transposon (hog1-4) and a T-DNA tag (hog1-5) in the HOG1 gene each behaved as zygotic embryo lethal mutants and could not be made homozygous. The results suggest that the homozygous hog1 point mutants are leaky and result in genome demethylation and poor growth and that homozygous insertion mutations result in zygotic lethality. Complementation of the hog1-1 point mutation with a T-DNA containing the gene coding for SAH hydrolase restored gene silencing, HDG silencing, DNA methylation, fast growth, and normal seed viability. The same T-DNA also complemented the zygotic embryo lethal phenotype of the hog1-4 tagged mutant. A model relating the HOG1 gene, DNA methylation, and methylation-dependent HDG silencing is presented.
Molecular Plant Pathology | 2001
Mary M. Robison; Salehuzzaman Shah; Bhaju Tamot; K. Peter Pauls; Barbara A. Moffatt; Bernard R. Glick
Summary Ethylene evolved during compatible or susceptible disease interactions may hasten and/or worsen disease symptom development; if so, the prevention of disease-response ethylene should reduce disease symptoms. We have examined the effects of reduced ethylene synthesis on Verticillium wilt (causal organism, Verticillium dahliae) of tomato by transforming tomato with ACC deaminase, which cleaves ACC, the immediate biosynthetic precursor of ethylene in plants. Three promoters were used to express ACC deaminase in the plant: (i) CaMV 35S (constitutive expression); (ii) rolD (limits expression specifically to the site of Verticillium infection, i.e. the roots); and (iii) prb-1b (limits expression to certain environmental cues, e.g. disease infection). Significant reductions in the symptoms of Verticillium wilt were obtained for rolD- and prb-1b-, but not for 35S-transformants. The pathogen was detected in stem sections of plants with reduced symptoms, suggesting that reduced ethylene synthesis results in increased disease tolerance. The effective control of formerly recalcitrant diseases such as Verticillium wilt may thus be obtained by preventing disease-related ethylene production via the tissue-specific expression of ACC deaminase.
Gene | 1994
Barbara A. Moffatt; Elizabeth A. McWhinnie; Sunita K. Agarwal; Dennis A. Schaff
The apt gene, coding for adenine phosphoribosyltransferase (APRT), has been isolated from the plant Arabidopsis thaliana. Data from both Southern analysis and characterization of apt clones isolated from a genomic library is consistent with the occurrence of one apt within the A. thaliana genome. Comparison of the nucleotide sequence of the apt gene with its corresponding cDNA indicates that the gene contains five introns, whereas all other apt isolated to date have fewer introns (four in mammals, two in Drosophila). The locations of the introns within the plant apt coding region are not consistent with the placement of introns in the previously isolated apt of murines, human and Drosophila species. In agreement with its expression pattern in vivo, the upstream region of this plant apt is able to express the beta-glucuronidase-encoding gene (gus) in an apparently constitutive manner in transgenic A. thaliana plants. The apt promoter region is notable for its lack of conventional promoter elements such as TATA, CCAAT or G+C-rich sequence elements.
Plant Physiology | 2006
Mahmoud W. Yaish; Andrew C. Doxey; Brendan J. McConkey; Barbara A. Moffatt; Marilyn Griffith
Extracellular pathogenesis-related proteins, including glucanases, are expressed at cold temperatures in winter rye (Secale cereale) and display antifreeze activity. We have characterized recombinant cold-induced glucanases from winter rye to further examine their roles and contributions to cold tolerance. Both basic β-1,3-glucanases and an acidic β-1,3;1,4-glucanase were expressed in Escherichia coli, purified, and assayed for their hydrolytic and antifreeze activities in vitro. All were found to be cold active and to retain partial hydrolytic activity at subzero temperatures (e.g. 14%–35% at −4°C). The two types of glucanases had antifreeze activity as measured by their ability to modify the growth of ice crystals. Structural models for the winter rye β-1,3-glucanases were developed on which putative ice-binding surfaces (IBSs) were identified. Residues on the putative IBSs were charge conserved for each of the expressed glucanases, with the exception of one β-1,3-glucanase recovered from nonacclimated winter rye in which a charged amino acid was present on the putative IBS. This protein also had a reduced antifreeze activity relative to the other expressed glucanases. These results support the hypothesis that winter rye glucanases have evolved to inhibit the formation of large, potentially fatal ice crystals, in addition to having enzymatic activity with a potential role in resisting infection by psychrophilic pathogens. Glucanases of winter rye provide an interesting example of protein evolution and adaptation aimed to combat cold and freezing conditions.
Protoplasma | 2002
Chenhong Zhang; Frédérique C. Guinel; Barbara A. Moffatt
Summary. Adenine phosphoribosyltransferase (APT) catalyzes the conversion of adenine and cytokinin bases to the corresponding nucleotides. An Arabidopsis thaliana mutant lacking the major APT isoform, APT1, is male sterile due to defects soon after meiosis. We have now used electron microscopy to define the effects of APT1 deficiency on pollen development to determine whether the changes might be attributed to adenine or cytokinin metabolism. Changes were observed in mutant anthers in both tapetal and pollen mother cells prior to meiosis with additional defects found at later stages, in both compartments. Principal changes include altered lipid accumulation in the tapetal cells, changes in pollen cell wall development, and a loss of synchrony in the development of the tapetum and microspores. Taken together our results suggest that APT1 deficiency causes a general metabolic decrease in energy metabolism, due to the lack of adenine recycling into adenylate nucleotides, which ultimately leads to pollen abortion. The early onset of meiosis in the mutant may be associated with altered cytokinin metabolism.
Plant Physiology | 2006
Li-Sen Young; Benjamin R. Harrison; U.M. Narayana Murthy; Barbara A. Moffatt; Simon Gilroy; Patrick Masson
Adenosine kinase (ADK) is a key enzyme that regulates intra- and extracellular levels of adenosine, thereby modulating methyltransferase reactions, production of polyamines and secondary compounds, and cell signaling in animals. Unfortunately, little is known about ADKs contribution to the regulation of plant growth and development. Here, we show that ADK is a modulator of root cap morphogenesis and gravitropism. Upon gravistimulation, soluble ADK levels and activity increase in the root tip. Mutation in one of two Arabidopsis (Arabidopsis thaliana) ADK genes, ADK1, results in cap morphogenesis defects, along with alterations in root sensitivity to gravistimulation and slower kinetics of root gravitropic curvature. The kinetics defect can be partially rescued by adding spermine to the growth medium, whereas the defects in cap morphogenesis and gravitropic sensitivity cannot. The root morphogenesis and gravitropism defects of adk1-1 are accompanied by altered expression of the PIN3 auxin efflux facilitator in the cap and decreased expression of the auxin-responsive DR5-GUS reporter. Furthermore, PIN3 fails to relocalize to the bottom membrane of statocytes upon gravistimulation. Consequently, adk1-1 roots cannot develop a lateral auxin gradient across the cap, necessary for the curvature response. Interestingly, adk1-1 does not affect gravity-induced cytoplasmic alkalinization of the root statocytes, suggesting either that ADK1 functions between cytoplasmic alkalinization and PIN3 relocalization in a linear pathway or that the pH and PIN3-relocalization responses to gravistimulation belong to distinct branches of the pathway. Our data are consistent with a role for ADK and the S-adenosyl-l-methionine pathway in the control of root gravitropism and cap morphogenesis.