Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barbara Ann Halkier is active.

Publication


Featured researches published by Barbara Ann Halkier.


Trends in Plant Science | 2002

GLUCOSINOLATE RESEARCH IN THE ARABIDOPSIS ERA

Ute Wittstock; Barbara Ann Halkier

The wide range of biological activities of products derived from the glucosinolate-myrosinase system is biologically and economically important. On the one hand, the degradation products of glucosinolates play an important role in the defence of plants against herbivores. On the other hand, these compounds have toxic (e.g. goitrogenic) as well as protective (e.g. cancer-preventing) effects in higher animals and humans. There is a strong interest in the ability to regulate and optimize the levels of individual glucosinolates tissue-specifically to improve the nutritional value and pest resistance of crops. Recent advances in our understanding of glucosinolate biosynthesis have brought us closer to this goal.


Trends in Plant Science | 2010

Biosynthesis of glucosinolates – gene discovery and beyond

Ida E. Sønderby; Fernando Geu-Flores; Barbara Ann Halkier

Glucosinolates are sulfur-rich secondary metabolites characteristic of the Brassicales order with important biological and economic roles in plant defense and human nutrition. Application of systems biology tools continues to identify genes involved in the biosynthesis of glucosinolates. Recent progress includes genes in all three phases of the pathway, i.e. side-chain elongation of precursor amino acids, formation of the core glucosinolate structure and side-chain decoration. Major breakthroughs include the ability to produce glucosinolates in Nicotiana benthamiana, the finding that specific glucosinolates play a key role in Arabidopsis innate immune response, and a better understanding of the link between primary sulfur metabolism and glucosinolate biosynthesis.


Nucleic Acids Research | 2006

Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments

Hussam Hassan Nour-Eldin; Bjarne Gram Hansen; Morten H. H. Nørholm; Jacob Kruger Jensen; Barbara Ann Halkier

The largely unused uracil-excision molecular cloning technique has excellent features in most aspects compared to other modern cloning techniques. Its application has, however, been hampered by incompatibility with proof-reading DNA polymerases. We have advanced the technique by identifying PfuCx as a compatible proof-reading DNA polymerase and by developing an improved vector design strategy. The original features of the technique, namely simplicity, speed, high efficiency and low cost are thus combined with high fidelity as well as a transparent, simple and flexible vector design. A comprehensive set of vectors has been constructed covering a wide range of different applications and their functionality has been confirmed.


Journal of Biological Chemistry | 2000

Cytochrome P450 CYP79B2 from Arabidopsis Catalyzes the Conversion of Tryptophan to Indole-3-acetaldoxime, a Precursor of Indole Glucosinolates and Indole-3-acetic Acid

Michael Dalgaard Mikkelsen; Carsten Hørslev Hansen; Ute Wittstock; Barbara Ann Halkier

Glucosinolates are natural plant products known as flavor compounds, cancer-preventing agents, and biopesticides. We report cloning and characterization of the cytochrome P450 CYP79B2 fromArabidopsis. Heterologous expression of CYP79B2 inEscherichia coli shows that CYP79B2 catalyzes the conversion of tryptophan to indole-3-acetaldoxime. Recombinant CYP79B2 has a K m of 21 μm and aV max of 7.78 nmol/h/ml culture. Inhibitor studies show that CYP79B2 is different from a previously described enzyme activity that converts tryptophan to indole-3-acetaldoxime (Ludwig-Müller, J., and Hilgenberg, W. (1990)Phytochemistry, 29, 1397–1400). CYP79B2 is wound-inducible and expressed in leaves, stem, flowers, and roots, with the highest expression in roots. Arabidopsis overexpressing CYP79B2 has increased levels of indole glucosinolates, which strongly indicates that CYP79B2 is involved in indole glucosinolate biosynthesis. Our data show that oxime production by CYP79s is not restricted to those amino acids that are precursors for cyanogenic glucosides. Our data are consistent with the hypothesis that indole glucosinolates have evolved from cyanogenesis. Indole-3-acetaldoxime is a precursor of the plant hormone indole-3-acetic acid, which suggests that CYP79B2 might function in biosynthesis of indole-3-acetic acid. Identification of CYP79B2 provides an important tool for modification of the indole glucosinolate content to improve nutritional value and pest resistance.


Plant Physiology | 2003

Modulation of CYP79 Genes and Glucosinolate Profiles in Arabidopsis by Defense Signaling Pathways

Michael Dalgaard Mikkelsen; Bent Larsen Petersen; Erich Glawischnig; Anders Bøgh Jensen; Erik Andreasson; Barbara Ann Halkier

Glucosinolates are natural plant products that function in the defense toward herbivores and pathogens. Plant defense is regulated by multiple signal transduction pathways in which salicylic acid (SA), jasmonic acid, and ethylene function as signaling molecules. Glucosinolate content was analyzed in Arabidopsis wild-type plants in response to single or combinatorial treatments with methyljasmonate (MeJA), 2,6-dichloro-isonicotinic acid, ethylene, and 2,4-dichloro-phenoxyacetic acid, or by wounding. In addition, several signal transduction mutants and the SA-depleted transgenic NahG line were analyzed. In parallel, expression of glucosinolate biosynthetic genes of the CYP79 gene family and the UDPG:thiohydroximate glucosyltransferase was monitored. After MeJA treatment, the amount of indole glucosinolates increased 3- to 4-fold, and the corresponding Trp-metabolizing genes CYP79B2 andCYP79B3 were both highly induced. Specifically, the indole glucosinolateN-methoxy-indol-3-ylmethylglucosinolate accumulated 10-fold in response to MeJA treatment, whereas 4-methoxy-indol-3-ylmethylglucosinolate accumulated 1.5-fold in response to 2,6-dichloro-isonicotinic acid. In general, few changes were seen for the levels of aliphatic glucosinolates, although increases in the levels of 8-methylthiooctyl glucosinolate and 8-methylsulfinyloctyl glucosinolate were observed, particularly after MeJA treatments. The findings were supported by the composition of glucosinolates in the coronatine-insensitive mutantcoi1, the ctr1 mutant displaying constitutive triple response, and the SA-overproducingmpk4 and cpr1 mutants. The present data indicate that different indole glucosinolate methoxylating enzymes are induced by the jasmonate and the SA signal transduction pathways, whereas the aliphatic glucosinolates appear to be primarily genetically and not environmentally controlled. Thus, different defense pathways activate subsets of biosynthetic enzymes, leading to the accumulation of specific glucosinolates.


PLOS Genetics | 2007

Linking Metabolic QTLs with Network and cis-eQTLs Controlling Biosynthetic Pathways

Adam M. Wentzell; Heather C. Rowe; Bjarne Gram Hansen; Carla Ticconi; Barbara Ann Halkier; Daniel J. Kliebenstein

Phenotypic variation between individuals of a species is often under quantitative genetic control. Genomic analysis of gene expression polymorphisms between individuals is rapidly gaining popularity as a way to query the underlying mechanistic causes of variation between individuals. However, there is little direct evidence of a linkage between global gene expression polymorphisms and phenotypic consequences. In this report, we have mapped quantitative trait loci (QTLs)–controlling glucosinolate content in a population of 403 Arabidopsis Bay × Sha recombinant inbred lines, 211 of which were previously used to identify expression QTLs controlling the transcript levels of biosynthetic genes. In a comparative study, we have directly tested two plant biosynthetic pathways for association between polymorphisms controlling biosynthetic gene transcripts and the resulting metabolites within the Arabidopsis Bay × Sha recombinant inbred line population. In this analysis, all loci controlling expression variation also affected the accumulation of the resulting metabolites. In addition, epistasis was detected more frequently for metabolic traits compared to transcript traits, even when both traits showed similar distributions. An analysis of candidate genes for QTL-controlling networks of transcripts and metabolites suggested that the controlling factors are a mix of enzymes and regulatory factors. This analysis showed that regulatory connections can feedback from metabolism to transcripts. Surprisingly, the most likely major regulator of both transcript level for nearly the entire pathway and aliphatic glucosinolate accumulation is variation in the last enzyme in the biosynthetic pathway, AOP2. This suggests that natural variation in transcripts may significantly impact phenotypic variation, but that natural variation in metabolites or their enzymatic loci can feed back to affect the transcripts.


The Plant Cell | 2007

Arabidopsis Cytochrome P450 Monooxygenase 71A13 Catalyzes the Conversion of Indole-3-Acetaldoxime in Camalexin Synthesis

Majse Nafisi; Sameer Goregaoker; Christopher J. Botanga; Erich Glawischnig; Carl Erik Olsen; Barbara Ann Halkier; Jane Glazebrook

Camalexin (3-thiazol-2-yl-indole) is an indole alkaloid phytoalexin produced by Arabidopsis thaliana that is thought to be important for resistance to necrotrophic fungal pathogens, such as Alternaria brassicicola and Botrytis cinerea. It is produced from Trp, which is converted to indole acetaldoxime (IAOx) by the action of cytochrome P450 monooxygenases CYP79B2 and CYP79B3. The remaining biosynthetic steps are unknown except for the last step, which is conversion of dihydrocamalexic acid to camalexin by CYP71B15 (PAD3). This article reports characterization of CYP71A13. Plants carrying cyp71A13 mutations produce greatly reduced amounts of camalexin after infection by Pseudomonas syringae or A. brassicicola and are susceptible to A. brassicicola, as are pad3 and cyp79B2 cyp79B3 mutants. Expression levels of CYP71A13 and PAD3 are coregulated. CYP71A13 expressed in Escherichia coli converted IAOx to indole-3-acetonitrile (IAN). Expression of CYP79B2 and CYP71A13 in Nicotiana benthamiana resulted in conversion of Trp to IAN. Exogenously supplied IAN restored camalexin production in cyp71A13 mutant plants. Together, these results lead to the conclusion that CYP71A13 catalyzes the conversion of IAOx to IAN in camalexin synthesis and provide further support for the role of camalexin in resistance to A. brassicicola.


Trends in Plant Science | 2014

A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants

Sophie Léran; Kranthi Varala; Jean Christophe Boyer; Maurizio Chiurazzi; Nigel M. Crawford; Françoise Daniel-Vedele; Laure C. David; Rebecca Dickstein; Emilio Fernández; Brian G. Forde; Walter Gassmann; Dietmar Geiger; Alain Gojon; Ji Ming Gong; Barbara Ann Halkier; Jeanne M. Harris; Rainer Hedrich; Anis M. Limami; Doris Rentsch; Mitsunori Seo; Yi-Fang Tsay; Mingyong Zhang; Gloria M. Coruzzi; Benoît Lacombe

Members of the plant NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER (NRT1/PTR) family display protein sequence homology with the SLC15/PepT/PTR/POT family of peptide transporters in animals. In comparison to their animal and bacterial counterparts, these plant proteins transport a wide variety of substrates: nitrate, peptides, amino acids, dicarboxylates, glucosinolates, IAA, and ABA. The phylogenetic relationship of the members of the NRT1/PTR family in 31 fully sequenced plant genomes allowed the identification of unambiguous clades, defining eight subfamilies. The phylogenetic tree was used to determine a unified nomenclature of this family named NPF, for NRT1/PTR FAMILY. We propose that the members should be named accordingly: NPFX.Y, where X denotes the subfamily and Y the individual member within the species.


Trends in Plant Science | 1997

The biosynthesis of glucosinolates

Barbara Ann Halkier; Liangcheng Du

Glucosinolates and their hydrolytic products have a wide range of effects that are of biological and economic importance. In particular, these compounds have been shown to mediate interactions between plants and pests, and to reduce the feeding quality of rapeseed meal. Significant progress has now been made in understanding the biochemistry and genetics of glucosinolate biosynthesis, and the first Arabidopsis genes involved should soon be isolated. Hence, modifying the level of glucosinolates in Brassica crops, both to study interactions with pests and to improve flavour and nutritional qualities, should soon be a realistic possibility.


PLOS ONE | 2007

A Systems Biology Approach Identifies a R2R3 MYB Gene Subfamily with Distinct and Overlapping Functions in Regulation of Aliphatic Glucosinolates

Ida E. Sønderby; Bjarne Gram Hansen; Nanna Bjarnholt; Carla Ticconi; Barbara Ann Halkier; Daniel J. Kliebenstein

Background Glucosinolates are natural metabolites in the order Brassicales that defend plants against both herbivores and pathogens and can attract specialized insects. Knowledge about the genes controlling glucosinolate regulation is limited. Here, we identify three R2R3 MYB transcription factors regulating aliphatic glucosinolate biosynthesis in Arabidopsis by combining several systems biology tools. Methodology/Principal Findings MYB28 was identified as a candidate regulator of aliphatic glucosinolates based on its co-localization within a genomic region controlling variation both in aliphatic glucosinolate content (metabolite QTL) and in transcript level for genes involved in the biosynthesis of aliphatic glucosinolates (expression QTL), as well as its co-expression with genes in aliphatic glucosinolate biosynthesis. A phylogenetic analysis with the R2R3 motif of MYB28 showed that it and two homologues, MYB29 and MYB76, were members of an Arabidopsis-specific clade that included three characterized regulators of indole glucosinolates. Over-expression of the individual MYB genes showed that they all had the capacity to increase the production of aliphatic glucosinolates in leaves and seeds and induce gene expression of aliphatic biosynthetic genes within leaves. Analysis of leaves and seeds of single knockout mutants showed that mutants of MYB29 and MYB76 have reductions in only short-chained aliphatic glucosinolates whereas a mutant in MYB28 has reductions in both short- and long-chained aliphatic glucosinolates. Furthermore, analysis of a double knockout in MYB28 and MYB29 identified an emergent property of the system since the absence of aliphatic glucosinolates in these plants could not be predicted by the chemotype of the single knockouts. Conclusions/Significance It seems that these cruciferous-specific MYB regulatory genes have evolved both overlapping and specific regulatory capacities. This provides a unique system within which to study the evolution of MYB regulatory factors and their downstream targets.

Collaboration


Dive into the Barbara Ann Halkier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Meike Burow

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Søren Bak

University of Copenhagen

View shared research outputs
Researchain Logo
Decentralizing Knowledge