Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barbara Barylko is active.

Publication


Featured researches published by Barbara Barylko.


Journal of Biological Chemistry | 2009

Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II.

Stevan N. Djakovic; Lindsay A. Schwarz; Barbara Barylko; Gentry N. Patrick

Protein degradation via the ubiquitin proteasome system has been shown to regulate changes in synaptic strength that underlie multiple forms of synaptic plasticity. It is plausible, therefore, that the ubiquitin proteasome system is itself regulated by synaptic activity. By utilizing live-cell imaging strategies we report the rapid and dynamic regulation of the proteasome in hippocampal neurons by synaptic activity. We find that the blockade of action potentials (APs) with tetrodotoxin inhibited the activity of the proteasome, whereas the up-regulation of APs with bicuculline dramatically increased the activity of the proteasome. In addition, the regulation of the proteasome is dependent upon external calcium entry in part through N-methyl-d-aspartate receptors and L-type voltage-gated calcium channels and requires the activity of calcium/calmodulin-dependent protein kinase II (CaMKII). Using in vitro and in vivo assays we find that CaMKII stimulates proteasome activity and directly phosphorylates Rpt6, a subunit of the 19 S (PA700) subcomplex of the 26 S proteasome. Our data provide a novel mechanism whereby CaMKII may regulate the proteasome in neurons to facilitate remodeling of synaptic connections through protein degradation.


Molecular and Cellular Biology | 1999

Essential role of the dynamin pleckstrin homology domain in receptor-mediated endocytosis.

Mircea Achiriloaie; Barbara Barylko; Joseph P. Albanesi

ABSTRACT Pleckstrin homology (PH) domains are found in numerous membrane-associated proteins and have been implicated in the mediation of protein-protein and protein-phospholipid interactions. Dynamin, a GTPase required for clathrin-dependent endocytosis, contains a PH domain which binds to phosphoinositides and participates in the interaction between dynamin and the βγ subunits of heterotrimeric G proteins. The PH domain is essential for expression of phosphoinositide-stimulated GTPase activity of dynamin in vitro, but its involvement in the endocytic process is unknown. We expressed a series of dynamin PH domain mutants in cultured cells and determined their effect on transferrin uptake by those cells. Endocytosis is blocked in cells expressing a PH domain deletion mutant and a point mutant that fails to interact with phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. In contrast, expression of a point mutant with unimpaired PI(4,5)P2 interaction has no effect on transferrin uptake. These results demonstrate the significance of the PH domain for dynamin function and suggest that its role may be to mediate interactions between dynamin and phosphoinositides.


Journal of Biological Chemistry | 2001

A novel family of phosphatidylinositol 4-kinases conserved from yeast to humans.

Barbara Barylko; Stefan H. Gerber; Derk D. Binns; Nikolai Grichine; Mikhail Khvotchev; Thomas C. Südhof; Joseph P. Albanesi

Phosphatidylinositolpolyphosphates (PIPs) are centrally involved in many biological processes, ranging from cell growth and organization of the actin cytoskeleton to endo- and exocytosis. Phosphorylation of phosphatidylinositol at the D-4 position, an essential step in the biosynthesis of PIPs, appears to be catalyzed by two biochemically distinct enzymes. However, only one of these two enzymes has been molecularly characterized. We now describe a novel class of phosphatidylinositol 4-kinases that probably corresponds to the missing element in phosphatidylinositol metabolism. These kinases are highly conserved evolutionarily, but unrelated to previously characterized phosphatidylinositol kinases, and thus represent the founding members of a new family. The novel phosphatidylinositol 4-kinases, which are widely expressed in cells, only phosphorylate phosphatidylinositol, are potently inhibited by adenosine, but are insensitive to wortmannin or phenylarsine oxide. Although they lack an obvious transmembrane domain, they are strongly attached to membranes by palmitoylation. Our data suggest that independent pathways for phosphatidylinositol 4-phosphate synthesis emerged during evolution, possibly to allow tight temporal and spatial control over the production of this key signaling molecule.


The Journal of Neuroscience | 2010

Acute Dynamin Inhibition Dissects Synaptic Vesicle Recycling Pathways That Drive Spontaneous and Evoked Neurotransmission

Chi Hye Chung; Barbara Barylko; Jeremy Leitz; Xinran Liu; Ege T. Kavalali

Synapses maintain synchronous, asynchronous, and spontaneous forms of neurotransmission that are distinguished by their Ca2+ dependence and time course. Despite recent advances in our understanding of the mechanisms that underlie these three forms of release, it remains unclear whether they originate from the same vesicle population or arise from distinct vesicle pools with diverse propensities for release. Here, we used a reversible inhibitor of dynamin, dynasore, to dissect the vesicle pool dynamics underlying the three forms of neurotransmitter release in hippocampal GABAergic inhibitory synapses. In dynasore, evoked synchronous release and asynchronous neurotransmission detected after activity showed marked and unrecoverable depression within seconds. In contrast, spontaneous release remained intact after intense stimulation in dynasore or during prolonged (∼1 h) application of dynasore at rest, suggesting that separate recycling pathways maintain evoked and spontaneous synaptic vesicle trafficking. In addition, simultaneous imaging of spectrally separable styryl dyes revealed that, in a given synapse, vesicles that recycle spontaneously and in response to activity do not mix. These findings suggest that evoked synchronous and asynchronous release originate from the same vesicle pool that recycles rapidly in a dynamin-dependent manner, whereas a distinct vesicle pool sustains spontaneous release independent of dynamin activation. This result lends additional support to the notion that synapses harbor distinct vesicle populations with divergent release properties that maintain independent forms of neurotransmission.


Trends in Endocrinology and Metabolism | 2006

Membrane guanylyl cyclase receptors: an update

David L. Garbers; Ted D. Chrisman; Phi Wiegn; Takeshi Katafuchi; Joseph P. Albanesi; Vincent A. Bielinski; Barbara Barylko; Margaret M. Redfield; John C. Burnett

Recent studies have demonstrated key roles for several membrane guanylyl cyclase receptors in the regulation of cell hyperplasia, hypertrophy, migration and extracellular matrix production, all of which having an impact on clinically relevant diseases, including tissue remodeling after injury. Additionally, cell differentiation, and even tumor progression, can be profoundly influenced by one or more of these receptors. Some of these receptors also mediate important communication between the heart and intestine, and the kidney to regulate blood volume and Na+ balance.


Journal of Biological Chemistry | 1997

Phosphatidylinositol (4,5)-Bisphosphate-dependent Activation of Dynamins I and II Lacking the Proline/Arginine-rich Domains

Hsin Chieh Lin; Barbara Barylko; Mircea Achiriloaie; Joseph P. Albanesi

Dynamins comprise a family of GTPases that participate in the early stages of endocytosis. The GTPase activity of neuronal specific dynamin I is stimulated by microtubules, negatively charged phospholipid vesicles, and Src homology 3-containing proteins, including Grb2. These activators were previously shown to bind to a proline/arginine-rich domain (PRD) in the carboxyl-terminal region of the enzyme. Dynamin II, which is ubiquitously expressed, had not been purified or characterized previously. In this study, the enzymatic properties of rat dynamin II and of D746, a dynamin II truncation mutant lacking the PRD, have been characterized. Dynamin II has a higher basal activity than dynamin I, but the two types of dynamin are stimulated similarly by microtubules, Grb2, and phospholipids. D746 is not activated by microtubules or Grb2, highlighting the significance of the PRD for these interactions, but it is activated by phospholipid vesicles containing phosphatidylserine or phosphatidylinositol-4,5- bisphosphate. Moreover, in contrast to previous reports, the PRD appears not to be required for phospholipid-stimulated self-assembly of dynamin, which is a key element in the regulation of its activity. Similar results were obtained with bovine brain dynamin I that had been subjected to limited proteolytic digestion to remove the PRD. Our data highlight the potential involvement of dynamin pleckstrin homology domains in the regulation of GTPase activity by phospholipids.


Journal of Biological Chemistry | 2009

Palmitoylation Controls the Catalytic Activity and Subcellular Distribution of Phosphatidylinositol 4-Kinase IIα

Barbara Barylko; Yuntao S. Mao; Paweł Włodarski; Gwanghyun Jung; Derk D. Binns; Hui Qiao Sun; Helen L. Yin; Joseph P. Albanesi

Phosphatidylinositol 4-kinases play essential roles in cell signaling and membrane trafficking. They are divided into type II and III families, which have distinct structural and enzymatic properties and are essentially unrelated in sequence. Mammalian cells express two type II isoforms, phosphatidylinositol 4-kinase IIα (PI4KIIα) and IIβ (PI4KIIβ). Nearly all of PI4KIIα, and about half of PI4KIIβ, associates integrally with membranes, requiring detergent for solubilization. This tight membrane association is because of palmitoylation of a cysteine-rich motif, CCPCC, located within the catalytic domains of both type II isoforms. Deletion of this motif from PI4KIIα converts the kinase from an integral to a tightly bound peripheral membrane protein and abrogates its catalytic activity ( Barylko, B., Gerber, S. H., Binns, D. D., Grichine, N., Khvotchev, M., Sudhof, T. C., and Albanesi, J. P. (2001) J. Biol. Chem. 276, 7705-7708 ). Here we identify the first two cysteines in the CCPCC motif as the principal sites of palmitoylation under basal conditions, and we demonstrate the importance of the central proline for enzymatic activity, although not for membrane binding. We further show that palmitoylation is critical for targeting PI4KIIα to the trans-Golgi network and for enhancement of its association with low buoyant density membrane fractions, commonly termed lipid rafts. Replacement of the four cysteines in CCPCC with a hydrophobic residue, phenylalanine, substantially restores catalytic activity of PI4KIIα in vitro and in cells without restoring integral membrane binding. Although this FFPFF mutant displays a perinuclear distribution, it does not strongly co-localize with wild-type PI4KIIα and associates more weakly with lipid rafts.


Journal of Immunology | 2011

The CD3 ζ Subunit Contains a Phosphoinositide-Binding Motif That Is Required for the Stable Accumulation of TCR–CD3 Complex at the Immunological Synapse

Laura M. DeFord-Watts; David S. Dougall; Serkan Belkaya; Blake Johnson; Jennifer L. Eitson; Kole T. Roybal; Barbara Barylko; Joseph P. Albanesi; Christoph Wülfing; Nicolai S. C. van Oers

T cell activation involves a cascade of TCR-mediated signals that are regulated by three distinct intracellular signaling motifs located within the cytoplasmic tails of the CD3 chains. Whereas all the CD3 subunits possess at least one ITAM, the CD3 ε subunit also contains a proline-rich sequence and a basic-rich stretch (BRS). The CD3 ε BRS complexes selected phosphoinositides, interactions that are required for normal cell surface expression of the TCR. The cytoplasmic domain of CD3 ζ also contains several clusters of arginine and lysine residues. In this study, we report that these basic amino acids enable CD3 ζ to complex the phosphoinositides PtdIns(3)P, PtdIns(4)P, PtdIns(5)P, PtdIns(3,5)P2, and PtdIns(3,4,5)P3 with high affinity. Early TCR signaling pathways were unaffected by the targeted loss of the phosphoinositide-binding functions of CD3 ζ. Instead, the elimination of the phosphoinositide-binding function of CD3 ζ significantly impaired the ability of this invariant chain to accumulate stably at the immunological synapse during T cell–APC interactions. Without its phosphoinositide-binding functions, CD3 ζ was concentrated in intracellular structures after T cell activation. Such findings demonstrate a novel functional role for CD3 ζ BRS–phosphoinositide interactions in supporting T cell activation.


Journal of Protein Chemistry | 1999

Correlation Between Self-Association Modes and GTPase Activation of Dynamin

Derk D. Binns; Barbara Barylko; Nikolai Grichine; Mark A. L. Atkinson; Michael K. Helms; David M. Jameson; John F. Eccleston; Joseph P. Albanesi

The GTPase activity of dynamin is obligatorily coupled, by a mechanism yet unknown, to the internalization of clathrin-coated endocytic vesicles. Dynamin oligomerizes in vitro and in vivo and both its mechanical and enzymatic activities appear to be mediated by this self-assembly. In this study we demonstrate that dynamin is characterized by a tetramer/monomer equilibrium with an equilibrium constant of 1.67 × 1017 M−3. Stopped-flow fluorescence experiments show that the association rate constant for 2′(3′)-O-N-methylanthraniloyl (mant)GTP is 7.0 × 10−5 M−1 s−1 and the dissociation rate constant is 2.1 s−1, whereas the dissociation rate constant for mantdeoxyGDP is 93 s−1. We also demonstrate the cooperativity of dynamin binding and GTPase activation on a microtubule lattice. Our results indicate that dynamin self-association is not a sufficient condition for the expression of maximal GTPase activity, which suggests that dynamin molecules must be in the proper conformation or orientation if they are to form an active oligomer.


Journal of Biological Chemistry | 2012

Phosphatidylinositol 4-Kinase IIα Is Palmitoylated by Golgi-localized Palmitoyltransferases in Cholesterol-dependent Manner

Dongmei Lu; Hui Qiao Sun; Hanzhi Wang; Barbara Barylko; Yuko Fukata; Masaki Fukata; Joseph P. Albanesi; Helen L. Yin

Background: Palmitoylation of phosphatidylinositol 4-kinase IIα (PI4KIIα) regulates its function and Golgi localization, and cholesterol depletion delocalizes Golgi PI4KIIα and inhibits activity. Results: Palmitoyl acyltransferases (PATs) that palmitoylate PI4KIIα were identified. Cholesterol extraction inhibited PI4KIIα association with PATs, decreased palmitoylation, and reduced Golgi phosphatidylinositol 4-phosphate. Conclusion: Cholesterol has a critical role in regulating PI4KIIα interaction with PATs and palmitoylation. Significance: This study uncovered a novel mechanism for preferential recruitment of PI4KIIα to Golgi. Phosphatidylinositol 4-kinase IIα (PI4KIIα) is predominantly Golgi-localized, and it generates >50% of the phosphatidylinositol 4-phosphate in the Golgi. The lipid kinase activity, Golgi localization, and “integral” membrane binding of PI4KIIα and its association with low buoyant density “raft” domains are critically dependent on palmitoylation of its cysteine-rich 173CCPCC177 motif and are also highly cholesterol-dependent. Here, we identified the palmitoyl acyltransferases (Asp-His-His-Cys (DHHC) PATs) that palmitoylate PI4KIIα and show for the first time that palmitoylation is cholesterol-dependent. DHHC3 and DHHC7 PATs, which robustly palmitoylated PI4KIIα and were colocalized with PI4KIIα in the trans-Golgi network (TGN), were characterized in detail. Overexpression of DHHC3 or DHHC7 increased PI4KIIα palmitoylation by >3-fold, whereas overexpression of the dominant-negative PATs or PAT silencing by RNA interference decreased PI4KIIα palmitoylation, “integral” membrane association, and Golgi localization. Wild-type and dominant-negative DHHC3 and DHHC7 co-immunoprecipitated with PI4KIIα, whereas non-candidate DHHC18 and DHHC23 did not. The PI4KIIα 173CCPCC177 palmitoylation motif is required for interaction because the palmitoylation-defective SSPSS mutant did not co-immunoprecipitate with DHHC3. Cholesterol depletion and repletion with methyl-β-cyclodextrin reversibly altered PI4KIIα association with these DHHCs as well as PI4KIIα localization at the TGN and “integral” membrane association. Significantly, the Golgi phosphatidylinositol 4-phosphate level was altered in parallel with changes in PI4KIIα behavior. Our study uncovered a novel mechanism for the preferential recruitment and activation of PI4KIIα to the TGN by interaction with Golgi- and raft-localized DHHCs in a cholesterol-dependent manner.

Collaboration


Dive into the Barbara Barylko's collaboration.

Top Co-Authors

Avatar

Joseph P. Albanesi

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

David M. Jameson

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Derk D. Binns

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Witold Drabikowski

Nencki Institute of Experimental Biology

View shared research outputs
Top Co-Authors

Avatar

Helen L. Yin

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Justin A. Ross

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Lei Wang

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Yan Chen

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jinhui Li

University of Minnesota

View shared research outputs
Researchain Logo
Decentralizing Knowledge