Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barbara Bosier is active.

Publication


Featured researches published by Barbara Bosier.


Biochemical Pharmacology | 2010

Functionally selective cannabinoid receptor signalling : therapeutic implications and opportunities

Barbara Bosier; Giulio G. Muccioli; Emmanuel Hermans; Didier M. Lambert

The CB(1) and CB(2) cannabinoid receptors are G protein-coupled receptors (GPCRs) recognized by a variety of endogenous ligands and activating multiple signalling pathways. This multiplicity of ligands and intracellular transduction mechanisms supports a complex control of physiological functions by the endocannabinoid system, but requires a finely tuned regulation of the signalling events triggered on receptor activation. Here we review the diverse signalling pathways activated by the cannabinoid receptors and discuss the mechanisms allowing for specificity in the associated functional responses triggered by endogenous or exogenous ligands. At variance with the classical concept that all agonists at a given GPCR induce a similar repertoire of downstream events in all tissues, we also summarize the experimental evidence supporting the existence of functional selectivity and protean agonism at cannabinoid receptors. By placing emphasis on the ligand- or constitutive activity-dependent specifications of receptor-G protein coupling, these concepts explain how distinct cannabinoid ligands may activate specific downstream mediators. Finally, although both the diversity and specificity in cannabinoid signalling are now established in vitro, few data are available from in vivo studies. Therefore, we conclude this review by examining the experimental evidence supporting the physiological relevance of this complexity in the cannabinoid system. The ability to selectively manipulate physiological functions, through activation of defined signalling cascades, will in all likelihood help in the development of efficacious and safe cannabinoid-based therapeutics for a variety of indications.


Molecular metabolism | 2013

Astroglial CB1 cannabinoid receptors regulate leptin signaling in mouse brain astrocytes

Barbara Bosier; Luigi Bellocchio; Mathilde Metna-Laurent; Edgar Soria-Gómez; Isabelle Matias; Etienne Hebert-Chatelain; Astrid Cannich; Marlène Maitre; Thierry Leste-Lasserre; Pierre Cardinal; Juan Mendizabal-Zubiaga; Miren Josune Canduela; Leire Reguero; Emmanuel Hermans; Pedro Grandes; Daniela Cota; Giovanni Marsicano

Type-1 cannabinoid (CB1) and leptin (ObR) receptors regulate metabolic and astroglial functions, but the potential links between the two systems in astrocytes were not investigated so far. Genetic and pharmacological manipulations of CB1 receptor expression and activity in cultured cortical and hypothalamic astrocytes demonstrated that cannabinoid signaling controls the levels of ObR expression. Lack of CB1 receptors also markedly impaired leptin-mediated activation of signal transducers and activators of transcription 3 and 5 (STAT3 and STAT5) in astrocytes. In particular, CB1 deletion determined a basal overactivation of STAT5, thereby leading to the downregulation of ObR expression, and leptin failed to regulate STAT5-dependent glycogen storage in the absence of CB1 receptors. These results show that CB1 receptors directly interfere with leptin signaling and its ability to regulate glycogen storage, thereby representing a novel mechanism linking endocannabinoid and leptin signaling in the regulation of brain energy storage and neuronal functions.


Nuclear Medicine and Biology | 2008

Labelling and biological evaluation of [11C]methoxy-Sch225336: a radioligand for the cannabinoid-type 2 receptor

Nele Evens; Barbara Bosier; Brian J. Lavey; Joseph A. Kozlowski; Peter Vermaelen; Luc Baudemprez; Roger Busson; Didier M. Lambert; Koen Van Laere; Alfons Verbruggen; Guy Bormans

INTRODUCTION The cannabinoid type 2 receptor (CB(2) receptor) is part of the endocannabinoid system and has been suggested as mediator of a number of central and peripheral inflammatory processes. In the present study, we have synthesized N-[(1s)-1-[4-[[4-methoxy-2-[(4-[(11)C]methoxyphenyl)sulfonyl)-phenyl]sulfonyl] phenyl]ethyl]methanesulfonamide ([(11)C]methoxy-Sch225336) and evaluated this new tracer agent as a potential positron emission tomography radioligand for the in vivo visualization of CB(2) receptors. METHODS Sch225336 was demethylated and the resulting phenol precursor was radiolabelled with a carbon-11 methyl group by methylation using [(11)C]methyl iodide, followed by purification by high-performance liquid chromatography. The log P of [(11)C]methoxy-Sch225336 and its biodistribution in normal mice were determined. Enhancement of brain uptake by inhibition of blood-brain barrier (BBB) efflux transporters was studied. Mouse plasma was analysed to quantify the formation of radiometabolites. The affinity of Sch225336 for the human cannabinoid type 1 and type 2 receptor was determined. RESULTS [(11)C]methoxy-Sch225336 was obtained with a decay corrected radiochemical yield of about 30% and a specific activity of 88.8 GBq/mumol (end of synthesis). After intravenous injection in mice, the compound is rapidly cleared from the blood through the hepatobiliary pathway and does not show particular retention in any of the major organs. Polar metabolites were found in mouse plasma. Brain uptake was low despite the favourable log P value of 2.15, which is partly due to efflux by BBB pumps. CONCLUSION [(11)C]methoxy-Sch225336 is a good candidate for in vivo imaging of the CB(2) receptor, although the low blood-brain barrier penetration limits its potential for central nervous system imaging.


Neuropharmacology | 2008

An in vivo [18F]MK-9470 microPET study of type 1 cannabinoid receptor binding in Wistar rats after chronic administration of valproate and levetiracetam

Karolien Goffin; Guy Bormans; Cindy Casteels; Barbara Bosier; Didier M. Lambert; Igor D. Grachev; Wim Van Paesschen; Koen Van Laere

There is substantial evidence that the endocannabinoid system and in particular the type 1 cannabinoid receptor (CB1R) is involved in epilepsy. We evaluated the in vivo effect of chronic administration of the anti-epileptic drugs valproate (VPA) and levetiracetam (LEV) on rat brain CB1 receptors using the positron emission tomography (PET) tracer [(18)F]MK-9470. Six Wistar rats were treated with VPA (200mg/kg) or LEV (50mg/kg) IP daily for 2 weeks. Dynamic imaging after intravenous injection of 18 MBq [(18)F]MK-9470 was performed on a FOCUS 220 microPET at baseline and after chronic treatment. Six animals were used as controls and were injected with saline, using the same protocol. Parametric images based on standardized uptake values (SUV) were generated and were spatially normalized to Paxinos space. These CB1R images were analyzed using a predefined volume of interest (VOI)-based analysis. Differences in SUV values between chronic and baseline scans in each condition (saline, VPA and LEV treatment) were calculated in each VOI. Direct binding affinity of the drugs at CB1R was assessed by competitive binding assay in Chinese hamster ovarian cells expressing human CB1R. Chronic injections of saline did not produce significant changes in global [(18)F]MK-9470 binding (p=0.43), nor in tracer binding in individual VOIs. We found a significant increase in global cerebral [(18)F]MK-9470 binding after chronic VPA administration compared to sham treated animals (+32.5%, p<0.001), as well as in tracer binding in all individual VOIs. After chronic administration of LEV, there was no significant change in global cerebral CB1R binding (+6.9%, p=0.81), nor in tracer binding in individual VOIs. As VPA does not exhibit high affinity for CB1R (displacement of [(3)H]-SR141716A 1.3+/-14.0%), such upregulation is most likely caused by an indirect effect on the endocannabinoid system. This increase in CB1R tracer binding and possibly signaling may represent a supplementary and new mechanism of VPA, but not LEV, since activation of CB1Rs has been shown to decrease excitability and excitotoxicity on-demand.


The Journal of Nuclear Medicine | 2011

A PET Brain Reporter Gene System Based on Type 2 Cannabinoid Receptors

Caroline Vandeputte; Nele Evens; Jaan Toelen; Christophe Deroose; Barbara Bosier; Abdelilah Ibrahimi; Anke Van der Perren; Rik Gijsbers; Peter Janssen; Didier M. Lambert; Alfons Verbruggen; Zeger Debyser; Guy Bormans; Veerle Baekelandt; Koen Van Laere

PET of gene expression in the brain may greatly facilitate neuroscience research and potential clinical implementation of gene or cell therapy of central nervous system diseases. To date, no adequate PET reporter system is available for the central nervous system because available tracers either do not cross the intact blood–brain barrier or have high background signals. Here we report the first, to our knowledge, PET reporter system for imaging gene expression in the intact brain. Methods: We selected the human type 2 cannabinoid receptor (hCB2) as a reporter because of its low basal expression in the brain. An inactive mutant (D80N) was chosen so as not to interfere with signal transduction. As a reporter probe we used the 11C-labeled CB2 ligand, 11C-GW405833, which readily crosses the blood–brain barrier. Dual-modality imaging lentiviral and adeno-associated viral vectors encoding both hCB2(D80N) and firefly luciferase or enhanced green fluorescent protein were engineered and validated in cell culture. Next, hCB2(D80N) was locoregionally overexpressed in rat striatum by stereotactic injection of lentiviral and adeno-associated viral vectors. Results: Kinetic PET revealed specific and reversible CB2 binding of 11C-GW405833 in the transduced rat striatum. hCB2 and firefly luciferase expression was followed until 9 mo and showed similar kinetics. Both hCB2 expression and enhanced green fluorescent protein expression were confirmed by immunohistochemistry. Conclusion: Dual-modality imaging viral vectors encoding hCB2(D80N) were engineered, and the reporter system was validated in different animal species. The results support the potential future clinical use of CB2 as a PET reporter in the intact brain.


Journal of Neurochemistry | 2007

Agonist selective modulation of tyrosine hydroxylase expression by cannabinoid ligands in a murine neuroblastoma cell line

Barbara Bosier; Sébastien Tilleux; Mustapha Najimi; Didier M. Lambert; Emmanuel Hermans

Functional interactions between catecholamines and cannabinoid transmission systems could explain the influence of Δ9‐tetrahydrocannabinol on several central activities. Hence, the presence of cannabinoid CB1 receptors in tyrosine hydroxylase (TH) containing cells has been suggested, providing clue for a direct control of catecholamines synthesis. In the present study, we evidenced the constitutive expression of functional cannabinoid CB1 receptors in N1E‐115 neuroblastoma and reported on the use of this model to examine the influence of diverse cannabinoid ligands on TH expression. Exposure of the cells to the high‐affinity agonist HU 210 (5 h) resulted in a significant decrease in TH content (pEC50: 6.40). In contrast, no change was observed after a similar treatment with the structurally unrelated agonist CP 55,940. Besides, the use of a luciferase reporter assay revealed that these two agonists showed opposite influences on TH gene promoter activity. Thus, in cells expressing pTH‐luc constructs, inhibition and induction of luciferase activity were respectively observed with HU 210 (pEC50: 8.95) and CP 55,940 (pEC50: 9.09). Pharmacological characterisation revealed that these reciprocal responses were both related to the specific activation of cannabinoid CB1 receptor, suggesting an agonist‐dependent modulation of distinct signalling pathways. While these data points out the possible pharmacological manipulation of TH expression by cannabinoid ligands, such approach should take into account the existence of agonist selective trafficking of cannabinoid CB1 receptor signalling.


British Journal of Pharmacology | 2008

Differential modulation of AP-1- and CRE-driven transcription by cannabinoid agonists emphasizes functional selectivity at the CB1 receptor

Barbara Bosier; Emmanuel Hermans; Didier M. Lambert

Long‐term adaptations to pharmacological stimuli frequently originate from modulation of complex intracellular signalling pathways. We previously reported that HU210 and CP55940, two CB1 cannabinoid receptor agonists, induced opposite effects on TH expression. Herein, we characterized their influence on cAMP response element (CRE) and activator protein 1 (AP‐1)‐mediated regulation of gene transcription.


Neuropharmacology | 2012

Differential modulations of striatal tyrosine hydroxylase and dopamine metabolism by cannabinoid agonists as evidence for functional selectivity in vivo

Barbara Bosier; Giulio G. Muccioli; Birgit Mertens; Sophie Sarre; Yvette Michotte; Didier M. Lambert; Emmanuel Hermans

It is generally assumed that cannabinoids induce transient modulations of dopamine transmission through indirect regulation of its release. However, we previously described a direct cannabinoid-mediated control of tyrosine hydroxylase (TH) expression, in vitro. We herein report on the influence of cannabinoid agonists on the expression of this key enzyme in catecholamine synthesis as well as on the modification of dopamine content in adult rats. As expected for cannabinoid agonists, the exposure to either Δ(9)-THC, HU 210 or CP 55,940 induced both catalepsy and hypolocomotion. Supporting a possible long-lasting control on dopaminergic activity, we noticed a significant HU 210-mediated increase in TH expression in the striatum that was concomitant with an increase in striatal dopamine content. Surprisingly, while a similar trend was reported with Δ(9)-THC, CP 55,940 completely failed to modulate TH expression or dopamine content. Nevertheless, the access of CP 55,940 to brain structures was validated by determinations of drug concentrations in the tissue and by ex vivo binding experiments. Furthermore, confirming the central activity of CP 55,940, the analysis of dopamine metabolites revealed a reduction in striatal DOPAC concentrations. Consistent with the involvement of the CB(1) cannabinoid receptor in these different responses, both HU 210- and CP 55,940-mediated effects were prevented by SR 141716A. Therefore, the present data suggest that both HU 210 and CP 55,940 cause a delayed/persistent regulation of the dopamine neurotransmission system. Nevertheless, these commonly used cannabinoid agonists endowed with similar pharmacodynamic properties clearly triggered distinct biochemical responses highlighting the existence of functional selectivity in vivo.


FEBS Letters | 2008

Reciprocal influences of CB1 cannabinoid receptor agonists on ERK and JNK signalling in N1E-115 cells.

Barbara Bosier; Didier M. Lambert; Emmanuel Hermans

Agonists acting at the CB1 cannabinoid receptor in N1E‐115 neuroblastoma cells were found to activate MAPK family members with reciprocal efficacies. Thus, HU 210 robustly increased phosphorylation of ERK1/2 whereas CP 55,940 was more effective in activating JNK. The use of selected kinase inhibitors confirmed that distinct signalling cascades were involved in these responses. This reciprocal control of MAPK activity was correlated with the observation that HU 210‐ and CP 55,940‐mediated regulations of tyrosine hydroxylase gene expression were respectively impaired by MEK and JNK inhibitors. These data indicate that complex interactions of the CB1 receptor with intracellular signalling partners controlling MAPK activities may explain the apparent disparities in cellular responses to functional selective agonists.


Neuropharmacology | 2010

Revisiting the complex influences of cannabinoids on motor functions unravels pharmacodynamic differences between cannabinoid agonists.

Barbara Bosier; Sophie Sarre; Ilse Smolders; Yvette Michotte; Emmanuel Hermans; Didier M. Lambert

While numerous cannabinoid ligands were historically characterized using the tetrad test (hypomobility, catalepsy, hypothermia, analgesia), only few studies have extensively compared HU 210 and CP 55,940 which are nowadays classically used as reference agonists. Therefore, we herein re-examined the acute and the sustained changes in motor activities mediated by these two agonists in adult rats. As expected for cannabinoid agonists, exposure to either HU 210 or CP 55,940 induced a marked reduction in spontaneous locomotion. This reduction observed as early as 15 min after injection was correlated with the typical rearing and cataleptic responses, and was reversed by co-administration of the CB(1) cannabinoid receptor antagonist SR 141716A. Nevertheless, HU 210, but not CP 55,940, was found to induce persistent responses, lasting for at least 24h. Also suggesting the involvement of additional targets for HU 210, 10mg/kg SR 141716A failed to reverse the persistent HU 210-mediated decline in locomotion and rearing, while 1mg/kg was sufficient to completely abolish the behavioural responses measured 6h after the injection. Beside pharmacokinetic differences, these data therefore denote distinct pharmacodynamic profiles for HU 210 and CP 55,940. Together, these results suggest that HU 210 displays multicomponent responses that should be taken into account when interpreting data from in vivo/ex vivo studies.

Collaboration


Dive into the Barbara Bosier's collaboration.

Top Co-Authors

Avatar

Didier M. Lambert

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Emmanuel Hermans

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Giulio G. Muccioli

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Guy Bormans

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Koen Van Laere

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Cindy Casteels

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Alfons Verbruggen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Nele Evens

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Eric Stern

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Karolien Goffin

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge